
Using Product Activation in your application
Version 2004-03-26

Licenturion GmbH

Please direct any suggestions or questions to tech@licenturion.com.

1

Table of Contents

1 Overview.. 4

1.1 Product Activation... 4
1.1.1 Identifying individual copies... 4
1.1.2 Identifying a computer.. 4
1.1.3 The activation process... 7
1.1.4 Server Cookies... 9
1.1.5 Am I activated?.. 9
1.1.6 Security... 10
1.1.7 Tolerating hardware modifications... 11
1.1.8 The scoring mechanism.. 11
1.1.9 Assigning individual score values... 12
1.1.10 Notebook computers.. 14
1.1.11 Activating for more than one computer... 15
1.1.12 Modifying the counter of first-time activations... 15
1.1.13 Customized Product Activation.. 15
1.1.14 Activating individual features of a software application................................... 15
1.1.15 Time-limited Product Activation... 16

1.2 The complete picture.. 17
1.2.1 Activation on the server side... 17
1.2.2 Activation on the software application side.. 17
1.2.3 Am I activated?... 18

1.3 Implementation methods.. 19
1.3.1 The LicAct COM component... 19
1.3.2 The LicAct dynamic link library (DLL)... 20
1.3.3 The LicAct static library.. 21

1.4 Available APIs... 23
1.4.1 Standard API.. 23
1.4.2 Advanced API... 23
1.4.3 API conventions.. 23
1.4.4 Thread-safety... 23

1.5 Source code.. 24

2 Compatibility with earlier versions.. 25

2.1 Overview.. 25
2.2 SetCompatibility.. 26

3 The standard API.. 27

3.1 Basic functionality.. 27
3.1.1 CheckActivation.. 31
3.1.2 WinStep1... 33
3.1.3 WinStep2... 35
3.1.4 WinStep3... 37
3.1.5 WinStatus.. 40
3.1.6 WinResetDialog... 42
3.1.7 CleanRegistry... 43
3.1.8 SplitPayload... 44
3.1.9 ErrorString... 46

3.2 Customizing the user interface... 47
3.2.1 WinLoadResourceDll.. 51
3.2.2 WinFreeResourceDll... 52
3.2.3 WinSetResourceInstance.. 53
3.2.4 WinMapIdValues... 54
3.2.5 WinMapStatusTexts... 56

2

3.2.6 SetRegistryInfo... 58
3.2.7 WinEnableDebug... 61
3.2.8 WinSetParent()... 62

4 The advanced API... 63

4.1 CollectCandidates.. 66
4.2 GetCandidate.. 67
4.3 SelectCandidate... 70
4.4 CreateHardwareHash.. 72
4.5 FreeCandidates.. 73
4.6 Activate.. 74
4.7 AutoActivate... 76
4.8 GetActivationStatus... 78
4.9 SimpleCheckActivation... 81
4.10 SimpleAutoActivate.. 83
4.11 SimpleGetActivationStatus.. 85

5 Wrapping executables... 89

5.1 Improved robustness.. 89
5.1.1 Static protection... 90
5.1.2 Dynamic protection... 90

5.2 Protecting without source code.. 91
5.3 Error messages.. 92
5.4 Putting everything to work.. 93

5.4.1 Static protection... 93
5.4.2 Hooking into the wrapper... 94
5.4.3 Dynamic protection... 94

5.5 Other important things... 94

6 High Availability... 96

6.1 Background.. 96
6.2 GetActivationUrl().. 97

7 Constants.. 98

7.1 Result codes... 98
7.2 Activation modes... 98
7.3 Type of hardware components... 98
7.4 States of characteristics.. 99
7.5 Predefined registry keys.. 99

3

1 Overview

This document provides the information that you need to integrate Licenturion Product
Activation into your applications. Let's first have a look at how this licensing scheme works.

1.1 Product Activation

The idea underlying Product Activation is to enable the use of a each copy of a software
application or the use of certain features of each copy exclusively on a single computer.
Establishing such an exclusive binding between a given copy and a given computer is called
activating this copy for this computer. Activation for a computer requires interaction of your
end-users with you or with Licenturion.

Let us assume that you were selling a shareware word processor. You would then, for example,
choose to restrict the shareware version by disabling the "save" and "save as" functions. In this
way an end-user would be able to install and evaluate your word processor on his or her
computer but he or she would not be able to use it for any real work. In order to obtain a fully
functional version, the end-user would have to pay you and ask you or Licenturion for
assistance in activating the copy of your word processor for his or her computer to enable the
"save" and "save as" functions - exclusively on this computer.

For classic (non-shareware) software sales activation would typically be required to use your
software application at all. Activation for a single computer would then be included in the sales
price and be carried out by the end-user in the course of installing your software.

So, how does this prevent piracy? After your software application has been installed on the
end-user's computer he or she activates it for this computer in order to be able to use it at all
or to use all of its features. Let's assume that the end-user illicitly installed your software
application on a second computer. He or she would then have to activate, with your or
Licenturion's assistance, the application a second time for the second computer. Noticing,
however, the end-user's attempt to activate your application for a different computer, you or
Licenturion would deny activation and thus prevent any illicit use of your software application
on more than one computer.

In order to be able to establish a binding between a copy of a software application and a given
computer, we need means to uniquely identify each distributed copy of a software application
and to identify the computer that this copy is to be bound to without disclosing any sensitive
information about this computer.

1.1.1 Identifying individual copies

Identifying a copy of a software application is easy. We just have to supply a unique Serial
Number with each copy, e.g. by means of a sticker on the CD-ROM jewel case. For Product
Activation we use Serial Numbers that are sequences of 16 characters, e.g.

P7TQ-BS7X-S9AJ-ETM9

Serial Numbers are case-insensitive. Each of the 16 characters is one of the following 26 letters
and digits.

A B C D E F G H J K L M N P Q R S T W X Y Z 3 4 7 9

We neither use the letter O (it resembles a zero), nor the letter I (it could easily be mistaken
for a one), nor the letters U and V (they might look similar in some fonts). Instead, we use four
digits that do not resemble any letters (as in 2 vs. Z, 5 vs. S, 6 vs. G, and 8 vs. B). In addition,
we recommend that you use a clearly recognizable font when printing Serial Numbers, e.g.
Adrian Frutiger's OCR-B.

1.1.2 Identifying a computer

We need a similar concept to identify a single computer. The idea is to assign the computer an
identifier that - if possible - is unique and that cannot be copied to other computers. Let's have

4

a quick look at why we need these two conditions.

• When binding a copy of your software application to a single computer, the application only
remembers that it has been bound to a computer with an identifier of, say, X. So, it will not
run or provide its full functionality on any computer with an identifier of, say, Y. If, however,
the end-user was able to easily find a second computer with an identifier of X, the copy of
your software application would also work on this computer. Hence, identifiers should be
unique.

• Assume that a copy of your software application has been bound to a single computer with
an identifier of X. If it was possible to copy this identifier to a second computer, making this
computer have the same identifier, namely X, as the first computer, your application would
also work on the second computer. Hence, identifiers should not be copyable.

Achieving both goals at the same time is hard and therefore we do not use truly unique
identifiers. We just take care that the identifiers of two arbitrarily chosen computers are
different with a very high probability, which is enough for our purposes.

Product Activation identifies a computer by considering nine characteristics, e.g. the make and
model, of a variety of hardware components contained in the computer and constructs a
Hardware Hash - the identifier for a computer - from the gathered information. A Hardware
Hash thus represents the hardware configuration of a computer. Note that the term hardware
configuration comprises, in the context of this manual, only some selected hardware
components and not the full hardware configuration of the computer.

As computers typically differ in many hardware components, chances that any two computers
yield the same Hardware Hash are slim. In addition, copying hardware components from one
computer to another is not possible. So, Hardware Hashes meet the two conditions described
above.

Hardware Hashes are sequences of 12 characters, e.g.

LNKJ-BLR7-7TNZ

Like Serial Numbers, Hardware Hashes are case-insensitive. Each of the characters is selected
from the set of 26 letters and digits that we also use for Serial Numbers.

The hardware components represented by the Hardware Hash and their considered
characteristics are

• one of the installed harddrives - make and model

• one of the installed CD-ROM drives - make and model

• one of the installed SCSI host adapters or IDE controllers - make and model

• one of the installed graphics boards - make and model

• the first CPU in the computer - make and model, serial number

• the installed RAM - size

• one of the available disk volumes - volume serial number

• one of the installed Ethernet adapters - Ethernet address

Typically, the end-user may not specify of which harddrive, CD-ROM drive, etc., the
characteristic is included in the Hardware Hash. The hardware components to be used are
automatically determined. However, in customized Product Activation (see section 1.1.13)
advanced end-users can themselves select the hardware components to be considered.

From each of the collected characteristics, with the exception of the CPU serial number and the
Ethernet address, a numerical value between 0 and 7, i.e. a 3-bit value, is derived. The CPU

5

serial number and the Ethernet address are mapped to numerical values between 0 and 511,
i.e. a 9-bit value.

A value of 0 indicates that the corresponding characteristic is not available. If a computer, for
example, did not have any CD-ROM drive installed, the value representing the make and model
of one of the installed CD-ROM drives would be 0. If the installed CPU did not support a CPU
serial number, the respective value would be 0. And so on. Any value different from 0 indicates
that the corresponding characteristic is available. In this case the value is the result of passing
a text representation of the characteristic through a hash function.

As log2(26) is roughly 4.7, each of the 12 characters of a Hardware Hash represents about 4.7
bits. A complete 12-character Hardware Hash thus represents a 56-bit value. We use big-
endian "character ordering," so the first character of a Hardware Hash represents the most
significant 4.7 bits.

The 40 least significant bits of the 56-bit value represent the hardware configuration. The
remaining 16 bits contain a CRC-16 checksum to guard against typographic errors. The
following table gives the structure of Hardware Hashes in full detail.

Bits Value(s) Characteristic

0 - 2 0 - 7 one of the installed harddrives (make and model)

3 - 5 0 - 7 one of the installed CD-ROM drives (make and model)

6 - 8 0 - 7 one of the installed SCSI host adapters or IDE controllers
(make and model)

9 - 11 0 - 7 one of the installed graphics boards (make and model)

12 - 14 0 - 7 the first CPU in the computer (make and model)

15 - 17 0 - 7 the installed RAM (size)

18 - 20 0 - 7 one of the available disk volumes (volume serial number)

21 - 29 0 - 511 the first CPU in the computer (CPU serial number)

30 - 38 0 - 511 one of the installed Ethernet adapters (Ethernet address)

39 0 - 1 1 = the computer is a notebook computer
0 = the computer is not a notebook computer

40 - 55 0 - 65535 CRC-16 of bits 0 - 39

So, what about the end-users' privacy? Doesn't Licenturion learn which components the end-
users' computers are made of? When mapping, for example, the wealth of makes and models
of harddrives to only seven different values, many makes and models are mapped to the same
value. Hence it is not possible to determine from a given value the make and model that the
value has been derived from. It's a one-way thing. We are able to verify whether the make and
model of a harddrive match the value 3. Just pass the make and model through the hash
function and see whether the result is 3. Merely knowing the value 3 we are, however, unable
to identify the make and model that has led to this value. For characteristics that are even
more variable - i.e. CPU serial numbers and Ethernet addresses - we can even afford to use
511 different values instead of only seven. There are substantially more CPU serial numbers
and Ethernet addresses than harddrive makes and models out there, because CPU serial
numbers and Ethernet addresses are unique for each CPU and Ethernet adapter, respectively.
Hence, dividing, for example, the CPU serial numbers into 511 groups instead of only seven
groups does no harm to the end-users' privacy. There are still enough CPU serial numbers that
map to the same value.

So, it is highly likely that two different computers yield two different Hardware Hashes, but a
Hardware Hash nevertheless does not disclose which hardware components the corresponding
computer contains.

6

1.1.3 The activation process

During activation an end-user supplies the Serial Number identifying his or her copy of your
software product to be activated and the Hardware Hash identifying his or her computer for
which this copy is to be activated to the Licenturion server. The corresponding URL is

http://act.licenturion.com

The Licenturion server then generates an Activation Code linking the Serial Number and the
hardware configuration as represented by the Hardware Hash, i.e. not the full hardware
configuration of the computer but the components selected for inclusion in the Hardware Hash.
The Activation Code thus links the given copy of your software product (identified by the Serial
Number) to the computer for which it is to be activated (identified by the Hardware Hash). It
constitutes the binding between these two that has been introduced at the beginning of section
1.1. Activation Codes are sequences of 32 characters, e.g.

MLXB-GNF9-TGND-34BW-PS4K-KCC3-FDWA-GRX4

Activation Codes are case-insensitive. Each character is taken from the set of 26 characters
that is also used for Serial Numbers and Hardware Hashes.

The end-user then supplies the Activation Code to your application, the application establishes
the validity of the Activation Code, and from that point considers itself or some of its features
activated.

This process is completely transparent and enables end-users to verify that their privacy is
respected. The only information transmitted to the Licenturion server obviously consists of the
Serial Number and the Hardware Hash. The former is supplied with your application and thus
cannot contain any personal information. The contents of the latter are fully documented in
section 1.1.2 and, accordingly, represent the hardware configuration of the end-users'
computers without undermining their right to privacy.

While this manual process is fully transparent, it is not very comfortable - although 32-
character Activation Codes are relatively benign when compared to other people's solutions.
We therefore expect the vast majority of end-users to perform automatic activation. With
automatic activation your application asks the end-user for his or her Serial Number,
determines the Hardware Hash for the computer on which it is running, automatically transmits
the Serial Number and the Hardware Hash to the Licenturion server, receives the
corresponding Activation Code from the server, and activates itself without further intervention
by the end-user.

This mechanism is also suitable for easily integrating the manual activation process into your
own website. The idea is that your web-server collects the Serial Number and the Hardware
Hash from the end-user, transmits the information to our web-server in the described way,
receives the Activation Code or an error message, and displays it to the end-user.

The following table summarizes those parts of the manual activation process that are visible to
an end-user. The "Software application" column describes the end-user's interaction with his or
her copy of your software application, the "Licenturion server" column describes the end-user's
interaction with the Licenturion server.

Step Software application Licenturion server

1 The software application creates and
displays the Hardware Hash. -

2 - The end-user enters his or her Serial
Number and the Hardware Hash.

7

Step Software application Licenturion server

3 -

The server returns the Activation Code
corresponding to the Serial Number and
the hardware configuration represented

by the Hardware Hash.

4 The end-user enters the Activation Code. -

The table for automatic activation is considerably shorter.

Step Software application Licenturion server

1 The end-user enters his or her Serial
Number. -

When a Serial Number is used for activation for the first time, the hardware configuration
associated with it is stored by the Licenturion server. Subsequent activations are only allowed
as long as they are related to the same hardware configuration, i.e. to the same computer.

This restriction is imposed to prevent end-users from using the same Serial Number over and
over again to successively activate your software application for as many computers as they
like instead of the intended single computer. If the Licenturion server notices that the Serial
Number entered by an end-user has already been used in an activation for a different
computer, i.e. in conjunction with a different hardware configuration, it refuses to give out an
Activation Code and returns an error message instead.

So, why does the Licenturion server allow multiple activations for the same computer? Let's
assume that the end-user reformats his or her harddrive and thus loses all stored information,
in particular the information that his or her copy of your software application has already been
activated. When reinstalling his or her copy of your software application, the end-user will have
to activate it again. As this is clearly something to allow, the Licenturion server grants end-
users as many activations as they like, as long as the supplied hardware configuration does not
change, i.e. as long as the activations refer to the same computer.

Actually the whole process is a bit more complica..., err, sophisticated, but we will neglect the
details for now. Just remember that in case of a first-time activation the supplied hardware
configuration is stored by the Licenturion server. The following chart illustrates the manual
activation process as described up to this point. The automatic activation process works
analogously.

Ask the end-user for his or her Serial
Number and the Hardware Hash.

Has the Serial Number already been
used for an activation?

Does the Hardware Hash match the
stored hardware configuration?

Generate and display the
Activation Code.

Error: This copy has already been
activated for a different computer.No.

Yes

Store the hardware configuration
represented by the Hardware Hash.

No.

After the end-user has entered a valid Activation Code matching the current hardware
configuration, the software application will store it for later reference. The following chart
summarizes the activation process from the perspective of the software application.

8

Display the Hardware Hash
representing the current hardware

configuration.

Ask the end-user for the Activation
Code.

Does the Activation Code match
the current hardware configuration?

No.

Store the Activation Code.

 Yes.

1.1.4 Server Cookies

Automatic activation employs a simple HTTP-based request/response protocol for the
communication with the Licenturion server and respects the proxy settings of Internet
Explorer. We do not use SSL, since HTTPS is often blocked by corporate firewalls as encrypted
traffic cannot be content-scanned. Protection against eavesdroppers that try to harvest valid
Serial Numbers in front of the Licenturion server by analyzing the incoming network traffic is
supplied by a Diffie-Hellman scheme instead.

The data transmitted to the Licenturion server during automatic activation is called a Server
Cookie. A Server Cookie consists of 174 bytes, as described in the following table.

Bytes Contents

0 - 3 Product ID represented as a 32-bit value
(little endian byte-order)

4 - 7 Cryptographic checksum for the following bytes
(verified by the server)

8 - 27 ASCII representation of the Serial Number
(encrypted with the shared Diffie-Hellman secret).

28 - 42 ASCII representation of the Hardware Hash
(encrypted with the shared Diffie-Hellman secret).

43 - 170 the public Diffie-Hellman key of the client
(used by the server to create the shared Diffie-Hellman secret)

171 - 173 Length of the additional data represented as a 24-bit value
(little endian byte-order, currently unused and set to zero)

The Server Cookie is converted into an ASCII representation of 2 x 174 = 348 characters and
transmitted to the Licenturion server inside a POST request as a URL-encoded parameter
named "serverCookie". The ASCII conversion simply maps the two four-bit halves of each byte
to the sixteen letters 'A' through 'P'. The most significant four bits are stored first. The byte
value 0x21 would, for example, thus map to the 2-character sequence "CB".

The Licenturion server returns a 4-line ASCII file that contains status information and, if
activation is granted, the Activation Code corresponding to the data contained in the Server
Cookie.

1.1.5 Am I activated?

An installed copy of a software application considers itself to be activated, if an Activation Code
matching the current hardware configuration has been stored. The following chart illustrates
the behavior of the software application when determining whether it is activated.

9

Has an Activation Code
been stored? This copy is not activated at all.No.

 Yes.

Does the Activation Code match
the current hardware configuration?

This copy is not activated for
this computer.No.

This copy is activated.

 Yes.

Retrieve the stored
Activation Code.

1.1.6 Security

Imagine that a software pirate was able to generate valid Serial Numbers himself or herself. He
or she would then be able to happily produce loads of fresh Serial Numbers and use each Serial
Number to activate the same copy of your software application for a different computer.
Fortunately, protecting Serial Numbers is easy as their validity is only verified by the
Licenturion server. All 16-character sequences that constitute valid Serial Numbers share the
same construction plan, i.e. they all share a common structure. If a given sequence complies
with the construction plan, it is considered to be a valid Serial Number. If it does not, it is
considered to be random garbage. This construction plan can be kept securely on the server
and is never disclosed to the outside world.

Speaking more technically, Serial Numbers are protected by a message authentication code.
The secret construction plan corresponds to the secret cryptographic key used to create and
verify the message authentication code on the Licenturion server.

Now imagine that a software pirate was able to generate valid Activation Codes matching given
hardware configurations. He or she would then be able to perform activations himself or
herself, without the assistance - and thus without the control - of the Licenturion server. That's
why protecting Activation Codes is equally important, although a bit more complicated. All
Activation Codes share a single construction plan that describes how to derive a valid
Activation Code from a given hardware configuration. However, since Activation Codes are
validated by your software application and not by the Licenturion server, we have the following
problem. In order to be able to check whether a 32-character sequence given by an end-user is
a valid Activation Code, i.e. based on a given hardware configuration and generated according
to the construction plan, your application needs to know the construction plan underlying the
creation of valid Activation Codes. However, if your application knows the construction plan, a
software pirate can extract the construction plan from your application, analyze it and use the
gained insight to write a program that illicitly generates sequences that your application will
consider valid Activation Codes.

That's why the idea underlying Activation Codes as implemented by Licenturion Product
Activation is to keep their construction plan secret and equip your application only with the
ability to determine whether a sequence given by the end-user has been derived from a given
hardware configuration in compliance with the secret construction plan - without, however,
actually knowing the secret construction plan. In this way, the ability to create valid Activation
Codes is separated from the ability to verify whether a given sequence is a valid Activation
Code for a given hardware configuration. A pirate analyzing your application can, at maximum,
learn how to verify Activation Codes. He or she cannot find out how to generate valid
Activation Codes.

This separation of creation and verification of Activation Codes is based on public key
cryptography. An Activation Code is a digital signature over a message containing the
hardware configuration to which your application is to be bound. The secret creation plan
corresponds to the secret key employed during signature creation, the ability to verify
Activation Codes corresponds to knowledge of the public key for signature verification. The
rocket science part of the whole story is that Activation Codes as implemented by Licenturion

10

Product Activation consist of only 32 characters, while conventional digital signatures would
typically result in Activation Codes with a length of more than 200 characters.

1.1.7 Tolerating hardware modifications

Sometimes end-users add new hardware components to their computers, exchange old
hardware components for new and better ones, or remove hardware components that they do
not need any longer. Implementing the activation mechanism as described up to this point
would have two major implications in case the hardware of a given computer was modified.

• All software applications installed on the computer would have to be activated again as the
stored Activation Code would not match the new hardware configuration any longer (see
section 1.1.5).

• Still worse, the Licenturion server would deny activation as the new hardware configuration
would not match the hardware configuration stored for the affected end-user's Serial
Number during first-time activation (see section 1.1.3).

1.1.8 The scoring mechanism

Obviously, we need a way to tolerate hardware modifications. Licenturion Product Activation
offers a configurable scoring mechanism that enables you to specify up to which point
hardware changes are to be tolerated. This mechanism is employed by

• your software application to determine whether it still considers itself activated after the
hardware modifications and

• the Licenturion server to determine whether to grant activation in spite of the modified
hardware configuration.

To implement the scoring mechanism the present hardware configuration is compared to the
original hardware configuration.

• In case of your software application the original hardware configuration is the hardware
configuration at the time of its activation. So, how does your software application know the
original hardware configuration? When we described the activation process we
oversimplified a bit. During activation the software application does not only store the
Activation Code, but also the Hardware Hash representing the current, i.e. the original,
hardware configuration.

• In the case of the Licenturion server the original hardware configuration is the hardware
configuration supplied for first-time activation. As explained before, it is stored by the server
to be considered for subsequent activations.

As a result of the comparison of the present hardware configuration and the original hardware
configuration each characteristic is assigned one of the following five states.

State Description

present and matching

The characteristic has been available in the hardware configuration
at activation time, it is still available in the present hardware
configuration, and it has not changed.

Example: A computer has had a CD-ROM drive at activation time
and the CD-ROM drive has not been exchanged or removed since
then.

missing and matching

The characteristic neither has been available in the hardware
configuration at activation time nor is it available in the present
hardware configuration.

Example: A computer has not had a CD-ROM drive at activation
time and it still does not have a CD-ROM drive.

11

State Description

added

The characteristic has not been available in the hardware
configuration at activation time but it is available in the present
hardware configuration.

Example: A computer has not had a CD-ROM drive at activation
time but a CD-ROM drive has been added since then.

removed

The characteristic has been available in the hardware configuration
at activation time but it is not available in the present hardware
configuration.

Example: A computer has had a CD-ROM drive at activation time
but the CD-ROM drive has been removed since then.

changed

The characteristic has been available in the hardware configuration
at activation time, it is still available in the present hardware
configuration, but it has changed.

Example: A computer has had a CD-ROM drive at activation time
but the CD-ROM drive has been exchanged for another CD-ROM
drive model since then.

When comparing the present hardware configuration to the original hardware configuration an
individual score value is assigned to each characteristic that is either present and matching or
missing and matching. Characteristics that are added, removed, or changed, are assigned an
individual score value of zero. Then the total score for the present hardware configuration is
calculated by adding the nine individual score values. So, the more characteristics are present
and matching or missing and matching, the higher the total score. If the obtained total score is
greater than a configurable threshold, the hardware configuration is considered to identify the
same computer as the original hardware configuration.

Let's have a closer look at what "present and matching" means. Assume that an end-user's
computer contains only one harddrive when activating his or her copy of your software
application for the first time. So, this harddrive's characteristic is included in the original
hardware configuration. Later he or she adds a second harddrive to his or her computer. This,
however, will not change the "present and matching" status of the harddrive characteristic. As
long as the first harddrive is not removed or exchanged, the corresponding characteristic will
always remain present and matching. Generally, as long as the harddrive characteristic
contained in the original configuration matches any of the installed harddrives, it will remain
present and matching. Adding harddrives will therefore never change the state of a
characteristic.

This is not only the case for harddrives but for all characteristics in the hardware configuration.
As long as end-users just add hardware components, all characteristics will remain present and
matching.

1.1.9 Assigning individual score values

While we want to allow end-users to modify their hardware configuration, we definitely do not
want to be too tolerant. Imagine the following scenario. Audrey legitimately buys a copy of
your software application. She activates it using the Serial Number that you have supplied to
her. Audrey then hands her copy along with her Serial Number to her friend Donna. Donna
installs Audrey's copy on her computer and tries to activate it for this computer. If the
Licenturion server was too tolerant with respect to hardware changes, it would possibly fail to
recognize that it is now handling an activation for a different computer, handle Donna's
computer as if it were Audrey's computer with some hardware modifications, and let Donna
successfully activate.

We cannot completely eliminate this problem. However, by carefully selecting the parameters
of the scoring mechanism, we can substantially reduce the probability that two arbitrarily

12

chosen computers are erroneously considered to be the same computer by the activation
mechanism. Our solution is to assign the individual score values based on probabilities. The
lower the probability for an arbitrarily chosen computer to yield "missing and matching" or
"present and matching" for a given characteristic, the higher the associated individual score
value.

Let's have a look at Ethernet addresses to discuss this idea. It is still relatively probable today
that neither Audrey's nor Donna's computer has an Ethernet adapter. So, two hardware
configurations not including an Ethernet adapter, i.e. the corresponding characteristic missing
and matching, is not a strong indicator that these hardware configurations represent the same
computer. Simply because it is relatively probable that two arbitrarily chosen computers both
do not have an Ethernet adapter.

However, if the hardware configurations both contain an Ethernet adapter and the
corresponding characteristic is the same in both hardware configurations, this is a strong
indicator that these two hardware configurations represent the same computer. Remember
that a present Ethernet adapter results in one of 511 different values for the corresponding
characteristic. So, it is relatively improbable that the Ethernet adapters of two arbitrarily
chosen computers have the same characteristic.

That's why a missing and matching Ethernet adapter characteristic by default contributes an
individual score of 1 to the total score, whereas a present and matching Ethernet adapter
characteristic contributes by default the much higher individual score of 3. The same is true for
CPU serial numbers.

For other characteristics, e.g. the characteristic representing one of the installed harddrives, a
status of missing and matching is relatively unlikely. After all, most computers do contain at
least one harddrive. That's why these characteristics are by default given an individual score
value of 2 in case their status is missing and matching.

The two individual score values for missing and matching or present and matching
characteristics, respectively, can be set on the Licenturion server. The configured values are
considered by the Licenturion server when deciding whether to grant an activation, i.e.
whether a hardware configuration passed with a Serial Number is sufficiently similar to the
hardware configuration supplied during first-time activation for this Serial Number. They are
also used by your software application to determine whether it still considers itself activated
after hardware changes, i.e. whether the new hardware configuration is sufficiently similar to
the original hardware configuration.

The defaults for the individual score values are listed in the following table.

Characteristic present and
matching

missing and
matching

one of the installed harddrives (make and model) 1 2

one of the installed CD-ROM drives (make and model) 1 1

one of the installed SCSI host adapters or IDE controllers
(make and model) 1 2

one of the installed graphics boards (make and model) 1 2

the first CPU in the computer (make and model) 1 1

the installed RAM (size) 1 2

one of the available disk volumes (volume serial number) 1 2

the first CPU in the computer (CPU serial number) 3 1

one of the installed Ethernet adapters (Ethernet address) 3 1

To give you an idea how likely it is that, based on your configured individual score values and
the set threshold, Audrey's computer is sufficiently similar to Donna's computer to subvert the

13

protection scheme by reusing Audrey's Serial Number to illicitly activate Audrey's copy of your
software application also on Donna's computer, the Licenturion server calculates four
probabilities. Audrey's hardware configuration is assumed to be the original hardware
configuration to which Donna's hardware configuration is compared.

It is assumed that both computers contain at least one harddrive, CD-ROM drive, SCSI host
adapter or IDE controller, graphics board, CPU, and disk volume, as well as some RAM. So,
when comparing the first computer's hardware configuration to the second computer's
hardware configuration, the first seven of the above nine characteristics will either be in the
"present and matching" state or in the "changed" state. The four probabilities are then
calculated under the following four individual assumptions for the remaining two
characteristics.

1. Neither computer's CPU supports a CPU serial number and neither computer contains an
Ethernet adapter, i.e. the CPU serial number characteristic and the Ethernet adapter
characteristic are missing and matching. For the default individual score values given above
and the default threshold this probability is 1.02%.

2. Both computer's CPUs support a CPU serial number but neither computer contains an
Ethernet adapter, i.e. the CPU serial number characteristic is either present and matching or
changed and the Ethernet adapter characteristic is missing and matching. For the default
individual score values given above and the default threshold this probability is 0.15%.

3. Neither computer's CPU supports a CPU serial number but both computers contain an
Ethernet adapter, i.e. the CPU serial number characteristic is missing and matching and the
Ethernet adapter characteristic is either present and matching or changed. For the default
individual score values given above and the default threshold this probability is 0.15%.

4. Both computer's CPUs support a CPU serial number and both computers contain an Ethernet
adapter, i.e. the CPU serial number characteristic and the Ethernet adapter characteristic
are either present and matching or changed. For the default individual score values given
above and the default threshold this probability is 0.03%.

The four probabilities are displayed by the Licenturion server in a 2 by 2 coincidence matrix.

1.1.10 Notebook computers

Although notebook computers are hardly ever upgraded, inserting or removing PCMCIA cards
and plugging or unplugging the notebook computer from a docking station can lead to
substantial hardware changes. Product Activation is therefore typically more tolerant for
notebook computers than it is for desktop computers. As described before two hardware
configurations are considered to refer to the same computer if the total score obtained by
adding the nine individual score values is higher than a given threshold. This threshold is
actually two thresholds. One threshold is used for desktop computers and the second threshold
is used for notebooks.

Like the individual score values the threshold values can be set on the Licenturion server.
Again, the configured values are considered by the Licenturion server when deciding whether
to grant an activation and by your software application to determine whether it still considers
itself activated after hardware changes.

The default threshold for notebook computers is 3, the threshold for desktop computers
defaults to 6. If the comparison of two hardware configurations yields a score of 3 or more in
the case of a notebook or 6 or more in the case of a desktop, the two hardware configurations
are considered to identify the same computer.

When creating the coincidence matrix, the threshold for desktop computers is used to calculate
the four required probabilities.

14

1.1.11 Activating for more than one computer

Every now and then one of your end-users may want to deinstall your software application
from one computer and reinstall it on another computer. As this is typically not an every day
situation, allowing your end-users to do so every few weeks is typically sufficient.

For this purpose the Licenturion server offers you to specify the duration of a reset period for
your Serial Numbers. The reset period starts when a Serial Number is used for first-time
activation. Until the end of the reset period it is possible to use the Serial Number again for
activation only if the hardware configuration specified for an activation is, as detailed before,
sufficiently similar to the hardware configuration stored by the Licenturion server during first-
time activation. However, after the reset period is over, the next activation for the Serial
Number will be considered a first-time activation again, the provided hardware configuration
will be stored replacing the previously stored hardware configuration, and a new reset period
will start. The default duration of the reset period is 60 days. So the Licenturion server by
default basically forgets every 60 days about all previous activations for a Serial Number.

If you prefer to be still more tolerant, you may offer your end-users to perform more than one
first-time activation during the reset period. Suppose that an end-user tried to activate with a
hardware configuration substantially differing from the hardware configuration given during
first-time activation and that the reset period was not over. Instead of denying the activation,
the end-user would be allowed to override the denial for a specified number of times per reset
period. Each activation granted by this mechanism is considered a first-time activation, i.e. the
new provided hardware configuration is stored replacing the previously stored hardware
configuration, with the only difference that the reset period is not restarted.

As this feature can be abused by your end-users, it is disabled by default by setting the
maximal number of first-time activations per reset period to 1. This number can, however, be
increased.

1.1.12 Modifying the counter of first-time activations

It is conceivable that one of your end-users nevertheless requires more first-time activations
than he or she is allowed in the running reset period. In this case, he or she would have to
contact you and ask you to reset or decrease the counter of first-time activations for his or her
Serial Number. You can easily accomplish this via the Licenturion server.

1.1.13 Customized Product Activation

You can offer advanced end-users to further tailor the activation process to their needs. The
idea is to let an end-user specify which hardware components are used to form the hardware
configuration instead of having the activation mechanism perform this selection automatically.

Let us assume that an end-user uses a removable harddrive for data transfer between different
computers. He or she could then ensure that this harddrive is not included in the hardware
configuration, since removing it would otherwise modify the hardware configuration.

1.1.14 Activating individual features of a software application

Up to now we have considered a software application to be a monolithic block. We would only
activate the complete software application or nothing at all. However, Licenturion Product
Activation also offers to activate individual parts or features of a piece of software. For this
purpose, Activation Codes contain a 32-bit payload, which can be extracted by the software
application from a given Activation Code.

The payload is opaque to the Licenturion server. It does not need to know how to interpret the
payload. It just knows that the payload is a 32-bit value and can therefore be given a set of
rules along the lines of "If somebody activates using Serial Number A, then return an
Activation Code that has the 32-bit value X as its payload, if somebody activates using Serial
Number B, then return an Activation Code that has the 32-bit value Y as its payload, ..."

The interpretation of the payload is up to the software application. It could extract the payload

15

from an Activation Code and, for example, use it as a bit-mask, each of the 32 bits enabling or
disabling a certain feature of the application.

1.1.15 Time-limited Product Activation

The server can also be instructed to use the most significant 13 bits of the 32-bit payload for
storing an expiration date in the Activation Code, still leaving the least significant 19 bits for
user-defined content. After the expiration date of an Activation Code is reached, an activation
performed with this Activation Code becomes invalid and the software application returns into
its original state before activation. These temporary activations are typically used in shareware
scenarios to implement trial periods, during which a fully activated version of a piece of
software can be evaluated at no cost.

The expiration date is specified as an absolute point in time, e.g. "valid until February 1st,
2003" - as opposed to "valid for 30 days." This prevents a quite common kind of attack that
simply resets the software application's idea of how many days have passed since activation to
zero and thus extends trials periods ad infinitum.

16

1.2 The complete picture

Let's summarize everything that we now know about the activation process.

1.2.1 Activation on the server side

Ask the end-user for the Serial
Number and the Hardware Hash.

Has the Serial Number already been
used for an activation?

Retrieve the hardware configuration
stored for this Serial Number.

 Yes.

Compare the hardware configuration
represented by the Hardware Hash with
the retrieved hardware configuration.

Is the total score less than
the configured threshold?

Create and display the
Activation Code.

Initialize the number of first-time
activations for the Serial Number to 1.No.

Store the hardware configuration
represented by the Hardware Hash.

Is the reset period over?

 Yes.

Create and display the
Activation Code.

Initialize the number of first-time
activations for the Serial Number to 1.

Restart the reset period for
the Serial Number.

Yes.

Are more first-time activations allowed
for the Serial Number during the current

reset period?

No.

Deny activation.No.

Increment the number of first-time
activations for the Serial Number.

 Yes.

Is the Serial Number valid?

 Yes.

Invalid Serial Number.No.

Is the Hardware Hash valid?

 Yes.

Invalid Hardware Hash.
No.

Start the reset period for the
Serial Number.

No.

Store the hardware configuration
represented by the Hardware Hash.

1.2.2 Activation on the software application side

Display the Hardware Hash
representing the current hardware

configuration.

Ask the end-user for the Activation
Code.

Does the Activation Code match
the current hardware configuration?

No.

Store the Hardware Hash and
the Activation Code.

 Yes.

17

1.2.3 Am I activated?

Have a Hardware Hash and an
Activation Code been stored? This copy is not activated at all.No.

 Yes.

Is the hardware configuration
represented by the Hardware Hash
sufficiently similar to the current

hardware configuration?

This copy is not activated for
this computer.No.

This copy is activated.

 Yes.

Does the Activation Code match
the Hardware Hash?

No.

 Yes.

18

1.3 Implementation methods

Licenturion Product Activation functionality can be made available to your software application
as

• a COM component (implemented by licact.dll),

• a dynamic link library (also implemented by licact.dll, licact.lib is the corresponding import
library), or

• a static library (implemented by licacts.lib).

For C and C++ programmers using the dynamic link library (DLL) or the static library, the
header file licact.h is supplied. All files can be found in the top-level directory of this ZIP
archive.

IMPORTANT: If you choose to integrate Product Activation into your application using the
COM approach or the DLL approach, you have to supply your licact.dll file to your end-users in
the distribution package of your application. Never install your licact.dll file into any folder
shared with other applications, e.g. the Windows folder or the System32 folder! Never!
Jamais! Niemals! Always use the folder into which you install the executable file(s) of your
application. Because here's what is going to happen otherwise according to Murphy's law,
should you decide, for example, to install your licact.dll file into the System32 folder: In
addition to your application the end-user will also install another vendor's application, which is
also protected by Product Activation, which includes the other vendor's version of the licact.dll
file, which is also installed into the System32 folder. Obviously, the other vendor's DLL will
overwrite your DLL during the installation of the other vendor's application. The problem is now
that every licact.dll file is unique. Your DLL only recognizes your Activation Codes and the
other vendor's DLL only recognizes that vendor's Activation Codes. Technically speaking, your
DLL contains your public key and the other vendor's DLL contains the other vendor's public
key. In addition, your DLL contains your individual score values and the other vendor's DLL
contains the other vendor's individual score values. So, if your DLL is overwritten with the
other vendor's DLL, things will get seriously messed up and your application will not be able to
recognize your Activation Codes any longer. So, by installing your licact.dll file into a private
location such as the installation folder of your executable file(s), you ensure that your licact.dll
file is not touched by anyone else and that your application always uses your licact.dll file.

IMPORTANT: Your DLL contains your individual score values. They are used when applying
the previously described scoring mechanism to determine whether your software application is
activated for the computer that it is running on. If you change the individual score values
on the Licenturion server be sure to download the updated ZIP archive containing the new
DLL with the updated individual score values!

Each of the unique versions of the licact.dll file is unambiguously identified by a Product ID. To
find out which Product ID your licact.dll file has been assigned, have a look at the
PersonalInfo.txt ASCII text file in the top-level directory of this ZIP archive. You will find a
string of eight hex digits. This is your Product ID.

1.3.1 The LicAct COM component

Before a COM component is available it must be registered. The LicAct COM component
supports self-registration. To trigger self-registration of the component use licreg.exe, which
can also be found in the top-level directory of this ZIP archive. It is invoked as follows, either
from the command prompt or via "Run..." in the Windows start menu:

licreg.exe path-to-licact-dll

If you omit the path-to-licact-dll part then licreg.exe will display a file selection dialog box
allowing you to specify the correct path for the licact.dll file.

Let us assume that you have unpacked the ZIP archive to drive D:. The corresponding
invocation of licreg.exe would then be as follows:

19

D:\LicActSDK\licreg.exe D:\LicActSDK\licact.dll

If you invoked licreg.exe without the path argument, i.e. as

D:\LicActSDK\licreg.exe

then a file selection dialog box would appear, allowing you to specify the correct path for the
licact.dll file.

To unregister the LicAct COM component again, use licunr.exe, which is also located in the top-
level directory of this ZIP archive. It is used in exactly the same way as licreg.exe, the only
difference being that it causes the LicAct component to be unregistered instead of it being
registered.

IMPORTANT: Keep in mind that you must also register the LicAct COM component during the
installation process of your application on your end-users' computers and unregister it during
uninstallation. If your installation program does not support self-registering COM components,
you will have to run licreg.exe and licunr.exe in the way described above during installation
and uninstallation, respectively, to ensure that your LicAct COM component is correctly
registered and unregistered.

The LicAct COM component includes a type library which is also registered and unregistered via
the self-registration mechanism. The LicAct type library is what is typically visible to you in
your COM-aware development environment, e.g. Visual Basic. It is identified by a string that
looks as follows

LicActLib 1.0 Type Library [XXXXXXXX]

where the eight "X" characters represent the Product ID. Let us assume your PersonalInfo.txt
file tells you that your Product ID is 1234ABCD. Your type library would thus be named

LicActLib 1.0 Type Library [1234ABCD]

This name can also be found in your PersonalInfo.txt file. It is called the "Type Library Help
String".

The type library is embedded in the licact.dll file.

IMPORTANT: Double-check that you are using the correct type library! If more than one
LicAct COM component have been registered on a computer, e.g. by other vendors also using
Product Activation or by yourself using Product Activation for more than one product, all LicAct
type libraries will be listed in your COM-aware development environment, each with a different
Product ID between the square brackets. Make absolutely sure that you use the type library
bearing your Product ID and not somebody else's!

If you intend to use the COM component without using the type library, the PersonalInfo.txt
file contains additional information, such as the class ID or the interface ID for the LicAct
object.

IMPORTANT: To register successfully the type library requires OLEAUT32.DLL, version 2.20 or
better to be installed. The very first release of Windows 95 included version 2.1 of this DLL,
whereas Windows 95 OSR2 (Windows 95 B) fortunately contained version 2.20 already. The
problem is that today's tools produce type libraries in a format that is not supported by
OLEAUT32.DLL versions below 2.20. On affected Windows 95 systems registration of the
component will fail. In this case update OLEAUT32.DLL, e.g. by installing Internet Explorer 3.0
or later or the redistributable DCOM95 update, version 1.3, which is available from the
Microsoft website.

1.3.2 The LicAct dynamic link library (DLL)

In addition to the LicAct COM component, the licact.dll file also accommodates classic DLL
functionality. All functions accessible via COM are also available through the standard DLL

20

mechanism, i.e. they are exported by licact.dll. For C and C++ development, we supply the
header file licact.h along with the import library licact.lib in the top-level directory of this ZIP
archive.

IMPORTANT: Include the standard windows.h header file before including licact.h in your
source code, since licact.h requires the definition of HINSTANCE and HWND.

IMPORTANT: As mentioned above, make absolutely sure that your application uses the
correct licact.dll file by installing your licact.dll file into the same folder as the executable file
(s) of your application on your end-users' computers. Never use any shared folders such as the
Windows folder or the System32 folder.

As an additional protective measure all functions exported by licact.dll take the Product ID of
your licact.dll file as their first argument. Each function of licact.dll then verifies whether the
Product ID passed by your application matches the Product ID of the licact.dll file. If a
mismatch is detected, an error is returned. This has the following effect. Let us assume that
your licact.dll file has a Product ID of 1234ABCD. Your application therefore passes 1234ABCD
as the first argument to all functions in your licact.dll and licact.dll notices on each function call
that the Product ID is correct. Let us now assume that, perhaps because your licact.dll file was
accidentally overwritten by the end-user with another vendor's licact.dll file in spite of all the
care you have taken, your application erroneously invokes a function in the wrong licact.dll
which has a Product ID of, say, 2345BCDE. So, your application still passes 1234ABCD - but to
the wrong licact.dll. The wrong licact.dll will then detect the mismatch between the passed
Product ID of 1234ABCD and the expected Product ID of 2345BCDE and return an error code to
your application stating that 1234ABCD is not what it expected the application to pass.

1.3.3 The LicAct static library

A static library is supplied for use by C or C++ developers who prefer the Product Activation
functionality to reside inside their executable files instead of the separate licact.dll file. The
static library licacts.lib exports the same functions as the dynamic link library licact.dll. The
function declarations are identical and, hence, the header file licact.h used for the dynamic link
library also applies to the static library.

The only difference is that the static library needs to be initialized before any of its functions is
invoked. In the DLL case, initialization is automatically performed inside the DllMain() function.
To initialize the static library we mimic what DllMain() does - which is calling the
__LicInitContext() function. Note the two underscores at the beginning of the function name.
__LicInitContext() takes the instance handle of the running executable as its first argument.
The second argument is the address of a pointer named __LicContext. Again, note the two
underscores. The required declarations are contained in the licact.h header file.

IMPORTANT: Include the standard windows.h header file before including licact.h in your
source code, since licact.h requires the definition of HINSTANCE and HWND.

The following example illustrates the use of __LicInitContext() in a typical C program.

#include <windows.h>
#include <licact.h>
int WINAPI WinMain(HINSTANCE Inst, HINSTANCE Prev, LPSTR Cmd, int Show)
{
 __LicInitContext(Inst, &__LicContext);
 /*
 * [... more code ...]
 */
}
IMPORTANT: You may be required to add certain resources to executable files that are linked
against the static library. See section 3.2 for details.

21

The code in the static library requires functions from KERNEL32.DLL, USER32.DLL, GDI32.DLL,
ADVAPI32.DLL, NETAPI32.DLL, and SHELL32.DLL. Be sure to link your application against the
corresponding import libraries.

22

1.4 Available APIs

No matter which implementation method you chose, you always have two APIs at your
disposal, the standard API and the advanced API.

1.4.1 Standard API

The standard API is a high-level interface, i.e. it offers relatively powerful functions that do a
lot of things in one fell swoop. You could, for example, invoke only one function and watch the
standard API open a dialog box telling the end-user his or her Hardware Hash and asking for
his or her Activation Code, return a "canceled" result code if he or she pushes the cancel
button of the dialog box, otherwise determine whether the letters and digits entered by him or
her constitute an Activation Code that matches the current hardware configuration, and then
return an "everything OK" or "invalid Activation Code" result code, respectively. While it is
possible to customize the appearance of the GUI, the underlying program logic will always be
the same. Still, we expect the standard API to meet the needs of the majority of developers. It
is light-weight and it should be possible to implement Product Activation functionality within
much less than an hour.

IMPORTANT: If you use the standard API in conjunction with the licacts.lib static library be
sure to link the required dialog box resources to your executable. The necessary resources can
be taken from the actres.rc and resource.h files in the Src subdirectory of this ZIP archive. See
section 3.2 for more information on this subject.

1.4.2 Advanced API

For developers that prefer to take care of GUI-related things themselves or that require
customized program logic, the advanced API is a better choice. It is a low-level interface, i.e. it
offers functions that carry out limited and very specific tasks, like determining whether a given
string constitutes a valid Activation Code.

1.4.3 API conventions

The names of all functions exported by the DLL and the static library start with the two-letter
prefix "Lic" to prevent name clashes with other people's libraries. The functions exposed by the
COM component do not bear this prefix. Apart from that the function names used by the DLL,
the static library, and the COM component are all the same.

With the exception of ErrorString() (when using the COM component) or LicErrorString() (when
using the DLL or the static library) all API functions return a 32-bit integer result code. In case
of success the result code is zero. In case of failure the returned positive non-zero result code
specifies the error encountered while executing the API function. ErrorString() and
LicErrorString() can then be used to map the result code to a text string representation of the
error.

All DLL functions adhere to the STDCALL calling convention.

The DLL and the static library do not support Unicode. Nor does the COM component. Although
the COM component uses Unicode strings to interface with the outside world its internal string
representation is ANSI strings. Full Unicode support is planned for future versions of the DLL
and the COM component.

For the definitions of constants used in the API specifications, e.g. LIC_NO_ERROR or
LIC_MODE_CONVENTIONAL see section 7.

1.4.4 Thread-safety

All API functions are thread-safe but some do not operate exclusively on thread-local storage.
Some functions use global storage to maintain state between successive function calls in order
to keep the API simple. When using COM global storage is allocated on a per-object basis. In
case of the DLL or the static library the allocation is performed on a per-process basis
automatically in DllMain() (DLL) or manually by calling __LicInitContext() (static library, see

23

section 1.3.3). Although synchronization is in place to ensure thread-safety, i.e. that multi-
threading does not corrupt global storage, any execution of an API function in any thread may
overwrite information stored during any previous execution of an API function in any thread.

1.5 Source code

The Src subdirectory of this ZIP archive contains C source code for most parts of the libraries
and the COM component. For the missing parts we have included object files. To build
everything with the given makefile, the command line tools of Visual C++ 6.0 - cl.exe,
link.exe, lib.exe, etc. - must be installed. Then simply run

nmake all

in this subdirectory to build the static library and the DLL/COM component.

24

2 Compatibility with earlier versions

2.1 Overview

Every now and then we will probably think of enhancements to our technology which are
useful, but which would also make a new version of the libraries and the COM component
incompatible with previous versions. To still enable software developers to always work with
the latest version of the libraries/COM component and nevertheless be compatible with the
initial release any compatibility-breaking enhancements will always be switched off by default.
However, software developers can selectively enable these enhancements at their discretion.
So, you will always have access to the latest version containing the latest bug fixes, but it is up
to you to enable or disable those enhancements that break compatibility. In this way you will
always be able to update existing installations of your software with the latest version of the
libraries/COM component.

If you are not interested in enabling compatibility-breaking enhancements, just skip the
remainder of this section. However, if you do not have an existing user-base that depends on
compatibility, you should definitely learn how to enable all the latest bells and whistles in the
libraries/COM component.

Compatibility is configured via the SetCompatibility() function. It takes a single integer
argument of which bits 0 through 29 are used. Each of these 30 bits is linked to a single
enhancement that breaks the compatibility between the current version of the libraries/COM
component and their initial release. Setting one of these bits enables the corresponding
enhancement and clearing one of these bits disables the corresponding enhancement. By
default, i.e. if we do not call SetCompatibility() in our application, all compatibility-breaking
enhancements are disabled.

The following table helps us map the bits that we want to set to the integer value to be passed
to SetCompatibility(). We simply add the numbers given in the "Value" column for all bits that
we want to set. The resulting number is an integer with the intended bits set and all remaining
bits clear.

Bit Value

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

Bit Value

8 256

9 512

10 1,024

11 2,048

12 4,096

13 8,192

14 16,384

15 32,768

Bit Value

16 65,536

17 131,072

18 262,144

19 524,288

20 1,048,576

21 2,097,152

22 4,194,304

23 8,388,608

Bit Value

24 16,777,216

25 33,554,432

26 67,108,864

27 134,217,728

28 268,435,456

29 536,870,912

To set bits 0, 1, and 2 and clear all other bits, for example, we would have to pass 1 + 2 + 4 =
7 as integer parameter to SetCompatibility(). This would enable the enhancements linked to
bits 0, 1, and 2. Passing 0 as the integer parameter would not enable any enhancements, i.e.
it would disable all of them. This is the default.

25

2.2 SetCompatibility

Enables or disables compatibility-breaking enhancements in the libraries/COM component.

COM - SetCompatibility(Mask)

Direction Type (C) Type (Visual Basic)

Mask in int Long

Description

Mask Bits 0 through 29 of this integer parameter are used. Each of these 30 bits
enables or disables one of the compatibility-breaking enhancements.
Setting a bit enables the corresponding enhancement. Clearing a bit
disables the corresponding enhancement. Have a look at the remarks
below for additional information.

DLL - LicWinSetResourceInstance(ProductId, Inst)

Direction Type (C)

ProductId in const char *

Mask in int

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Mask Bits 0 through 29 of this integer parameter are used. Each of these 30 bits
enables or disables one of the compatibility-breaking enhancements.
Setting a bit enables the corresponding enhancement. Clearing a bit
disables the corresponding enhancement. Have a look at the remarks
below for additional information.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

Remarks

The following bits are currently used to enable or disable compatibility-breaking
enhancements.

Bit Associated enhancement

0 A new method for creating Hardware Hashes. This method has better statistical
properties than the original method. However, for the same hardware configuration it
generates a completely different Hardware Hash than the original method. This breaks
compatibility with the initial release of the libraries/COM component.

26

3 The standard API

Let's now have a look at the quick and easy way of integrating Product Activation into your
application. We consider the functions that get you going first. Then we describe how the
default GUI can be customized.

3.1 Basic functionality

When using the standard API, activation comprises only three simple steps. Each step is
executed by invoking a single API function.

• Step 1: A dialog box is displayed asking the end-user whether he or she prefers automatic,
conventional, or customized Product Activation.

The corresponding API function is WinStep1(). This step can be omitted if you prefer your
software application to always perform a preselected type of Product Activation without
asking the end-user.

• Step 2: The hardware configuration is determined. In case of customized Product Activation
a dialog box is displayed allowing the end-user to select one of the detected harddrives, CD-
ROM drives, volume serial numbers, and Ethernet adapters for inclusion in the hardware
configuration.

In the case of automatic or conventional Product Activation no interaction with the end-user
takes place. The corresponding API function is WinStep2().

• Step 3: In case of automatic Product Activation a dialog box appears which asks the end-
user to type in his or her Serial Number. The dialog box only accepts valid characters, i.e.
characters from the set of 26 letters and digits that are used to construct valid Serial
Numbers. A paste button allows a Serial Number to be pasted from the clipboard.

27

In the case of conventional or customized Product Activation a dialog box is shown which
contains the Hardware Hash representing the hardware configuration determined in the
previous step besides the URL of the activation homepage and which asks the end-user to
type in an Activation Code. The dialog box only accepts valid characters, i.e. characters from
the set of 26 letters and digits that are used to construct valid Activation Codes. A paste
button allows an Activation Code to be pasted from the clipboard.

The corresponding API function is WinStep3(). In the case of automatic Product Activation
the Licenturion server is automatically sent the entered Serial Number and the Hardware
Hash representing the current hardware configuration and the status value returned by this
function indicates whether whether the Licenturion server has supplied a valid Activation
Code.

In the case of conventional or customized Product Activation the entered Activation Code is
verified and the status value indicates whether the given Activation Code is valid.

If the status value indicates success, your software product is now activated. In case of an
error you must repeat this step to enable the end-user to correct the entered Serial Number
or Activation Code. The dialog box will then be opened again, containing the Serial Number
or the Activation Code previously entered by the end user. In order to display an empty
dialog box instead, invoke WinResetDialog() before repeating this step.

To determine whether to initiate the activation process check whether your software
application has already been activated. In case it is, you simply skip activation or tell the end-
user that his or her copy of your software application is already activated. The corresponding
API function is CheckActivation().

If successful, CheckActivation() and WinStep3() also return the 32-bit payload embedded in
the Activation Code entered by the end-user or received from the Licenturion server. If you
have instructed the Licenturion server to use the most significant 13 bits of the payload to
carry an expiration date for the Activation Code, use SplitPayload() to retrieve the number of
days left before the Activation Code expires and the remaining 19 (least significant) user-
specified bits of the payload.

WinStatus() displays a dialog box detailing the activation status of your software application.
For every characteristic the dialog box indicates whether it is present and matching, missing

28

and matching, or whether it has been added, removed, or changed since activation time. The
assigned individual score values are also given, as is the obtained total score and the
configured threshold that the total score must reach.

The functions of the standard API store and retrieve Hardware Hashes and Activation Codes in
and from the Windows registry. By default

HKEY_LOCAL_MACHINE\SOFTWARE\Licenturion GmbH\XXXXXXXX

is used. The eight "X" characters represent the Product ID of the product that the stored
information belongs to. For activation the end-user requires privileges that enable him or her
to create those registry keys ("Licenturion GmbH" and "XXXXXXXX") that do not yet exist and
associate values with the "XXXXXXXX" key. For the NT line of operating systems (Windows NT,
Windows 2000, and Windows XP) this means, that the end-user must be logged in as an
administrator. As this is not necessarily the case, the alternative user-specific fallback location

HKEY_CURRENT_USER\SOFTWARE\Licenturion GmbH\XXXXXXXX

is tried if the end-user does not have the required privileges to write to the
HKEY_LOCAL_MACHINE location. This leads to the following two scenarios on NT-based
operating systems.

• The end-user has permission to write to the HKEY_LOCAL_MACHINE location. As the
registration information stored at this location is visible to all user accounts, this activates
the software application for all users.

• The end-user does not have permission to write to the HKEY_LOCAL_MACHINE location, i.e.
he or she is not logged in as an administrator, and the activation information, i.e. the
Hardware Hash and the Activation Code, is stored at the HKEY_CURRENT_USER location
instead. As this location is user-specific, this only activates the software application for the
single user that performs the activation.

To manually deactivate your software application, call CleanRegistry(). This API function
removes any activation information related to your software application, i.e. the Hardware
Hash representing the original hardware configuration and the Activation Code, from the
Windows registry. It is typically used during the uninstallation of your application.

On NT-based operating systems The "Licenturion GmbH" and "XXXXXXXX" subkeys are created
with "Full Control" permissions for "Everyone". CleanRegistry() will thus successfully deactivate
the software application, even if invoked by an ordinary end-user without administrative
privileges. Moreover, owing to the liberal "Full Control" permissions assigned to the
"Licenturion GmbH" registry key, subsequent activations of the software application will

29

succeed at the HKEY_LOCAL_MACHINE location even for unprivileged end-users.

The top-level directory of this ZIP archive contains subdirectories with example source code
that illustrate the application of the standard API.

Subdirectory Contents

Standard Compact C source code that uses the DLL. The compiled executable
can be found in the top-level directory of this ZIP archive
(Standard.exe).

Standard-VB Compact Visual Basic source code that uses the COM component.

The top-level directory also contains a Visual C++ workspace (Examples.dsw).

30

3.1.1 CheckActivation

Determines whether your software product has already been activated.

COM - CheckActivation(Payload)

Direction Type (C) Type (Visual Basic)

Payload out int * Long

Description

Payload If he function is successful, this parameter receives the 32-bit payload of
the stored Activation Code.

DLL - LicCheckActivation(ProductId, Payload)

Direction Type (C)

ProductId in const char *

Payload out int *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Payload Must point to an integer that, if the function succeeds, is set to the 32-bit
payload of the stored Activation Code.

Result codes

• LIC_NO_ERROR

• The function completed successfully, i.e. the software application is activated.

• LIC_ERROR_CANNOT_READ_FROM_REGISTRY

• The registry key containing the Hardware Hash representing the original
hardware configuration and the Activation Code could not be opened. The
software application may not yet have been activated.

• The Hardware Hash value or the Activation Code value could not be read from
the opened registry key.

• LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION

• The current hardware configuration is too different from the original hardware
configuration.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• Somebody has illicitly modified the individual score values contained in the
licact.dll file.

• The function could not free memory on the process heap.

• LIC_ERROR_INVALID_ACTIVATION_CODE

• The Activation Code retrieved from the registry is invalid or does not match the
retrieved Hardware Hash.

31

• LIC_ERROR_INVALID_HARDWARE_HASH

• The Hardware Hash retrieved from the registry is invalid.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY

• The function could not allocate memory on the process heap.

Remarks

The function tries to retrieve the Hardware Hash representing the original hardware
configuration and the Activation Code for your software product from the registry. If it
succeeds, if the Activation Code matches the original hardware configuration, and if the
original hardware configuration is sufficiently similar to the current hardware configuration,
your software product is considered activated, the Payload parameter is set to the payload of
the stored Activation Code and LIC_NO_ERROR is returned.

32

3.1.2 WinStep1

Displays a dialog box that asks the end-user whether he or she prefers automatic Product
Activation, conventional Product Activation, or customized Product Activation.

COM - WinStep1(Mode)

Direction Type (C) Type (Visual Basic)

Mode out int * Long

Description

Mode If the function is successful, this parameter is set to

• LIC_MODE_AUTOMATIC,
• LIC_MODE_CONVENTIONAL, or
• LIC_MODE_CUSTOMIZED

to reflect whether the end-user has selected automatic, conventional, or
customized Product Activation.

DLL - LicWinStep1(ProductId, Mode)

Direction Type (C)

ProductId in const char *

Mode out int *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Mode Must point to an integer that, if the function succeeds, is set to

• LIC_MODE_AUTOMATIC,
• LIC_MODE_CONVENTIONAL, or
• LIC_MODE_CUSTOMIZED

to reflect whether the end-user has selected automatic, conventional, or
customized Product Activation.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_CANCEL

• The end-user pushed the cancel button.

• LIC_ERROR_CANNOT_CREATE_DIALOG

• The dialog box could not be displayed. Make sure that the standard API tries to
access the dialog box resources using the correct resource IDs.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

33

Remarks

If you prefer not to offer your end-users the choice between automatic, conventional, and
customized Product Activation, skip this function and always pass the LIC_MODE_AUTOMATIC
constant, the LIC_MODE_CONVENTIONAL constant, or the LIC_MODE_CUSTOMIZED constant
to WinStep2.

34

3.1.3 WinStep2

COM - WinStep2(HardwareHash, Mode)

Determines the current hardware configuration and returns a Hardware Hash representing the
current hardware configuration. If customized Product Activation is specified, a dialog box is
displayed that enables the end-user to specify which harddrive, CD-ROM drive, volume serial
number, and Ethernet adapter to include in the hardware configuration.

Direction Type (C) Type (Visual Basic)

HardwareHash out BSTR * String

Mode in int Long

Description

HardwareHash If the function succeeds, this string receives the Hardware Hash for the
current hardware configuration.

Mode Must be set to

• LIC_MODE_AUTOMATIC,
• LIC_MODE_CONVENTIONAL, or
• LIC_MODE_CUSTOMIZED

to indicate whether automatic, conventional, or customized Product
Activation is desired. The value to be used is typically obtained from the
WinStep1 function.

DLL - LicWinStep2(ProductId, HardwareHash, Mode)

Direction Type (C)

ProductId in const char *

HardwareHash out char *

Mode in int

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

HardwareHash Must point to a 15-byte buffer that, if the function is successful, receives
the Hardware Hash for the determined hardware configuration as a null-
terminated ASCII string.

Mode Must be set to

• LIC_MODE_AUTOMATIC,
• LIC_MODE_CONVENTIONAL, or
• LIC_MODE_CUSTOMIZED

to indicate whether automatic, conventional, or customized Product
Activation is desired. The value to be used is typically obtained from the
LicWinStep1 function.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_CANCEL

35

• The end-user pushed the cancel button.

• LIC_ERROR_CANNOT_CREATE_DIALOG

• The dialog box could not be displayed. Make sure that the standard API tries to
access the dialog box resources using the correct resource IDs.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• One or more of the dialog controls could not be accessed. Make sure that the
standard API tries to access the dialog controls using the correct control IDs.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY

• The function could not allocate memory on the process heap.

Remarks

This function is based on the CollectCandidates(), GetCandidate(), SelectCandidate(), and
CreateHardwareHash() functions included in the advanced API.

36

3.1.4 WinStep3

Automatic Product Activation: Displays a dialog box that requests the end-user to enter his
or her Serial Number, automatically transmits the Serial Number and the Hardware Hash
representing the current hardware configuration to the Licenturion server, and obtains an
Activation Code. If the Activation Code matches the current hardware configuration, the
activation process is completed by storing the Activation Code and the Hardware Hash in the
registry.

Conventional and customized Product Activation: Displays a dialog box containing the
Hardware Hash to be used for activation that requests the end-user to enter the Activation
Code obtained from the Licenturion server. If the Activation Code matches the current
hardware configuration, the activation process is completed by storing the Activation Code and
the Hardware Hash in the registry.

COM - WinStep3(Payload, HardwareHash, Mode)

Direction Type (C) Type (Visual Basic)

Payload out int * Long

HardwareHash in BSTR String

Mode in int Long

Description

Payload If he function is successful, this parameter receives the 32-bit payload of
the Activation Code used for activation.

HardwareHash Passes the Hardware Hash to be used for activation to the function. The
specified Hardware Hash is typically the Hardware Hash returned by the
WinStep2 function.

Mode Must be set to

• LIC_MODE_AUTOMATIC,
• LIC_MODE_CONVENTIONAL, or
• LIC_MODE_CUSTOMIZED

to indicate whether automatic, conventional, or customized Product
Activation is desired. The value to be used is typically obtained from the
WinStep1 function.

DLL - LicWinStep3(ProductId, Payload, HardwareHash, Mode)

Direction Type (C)

ProductId in const char *

Payload out int *

HardwareHash in const char *

Mode in int

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Payload Must point to an integer that, if he function is successful, receives the 32-
bit payload of the Activation Code used for activation.

37

Description

HardwareHash Must point to a null-terminated ASCII string specifying the Hardware Hash
to be used for activation. The specified Hardware Hash is typically the
Hardware Hash returned by the LicWinStep2 function.

Mode Must be set to

• LIC_MODE_AUTOMATIC,
• LIC_MODE_CONVENTIONAL, or
• LIC_MODE_CUSTOMIZED

to indicate whether automatic, conventional, or customized Product
Activation is desired. The value to be used is typically obtained from the
WinStep1 function.

Result codes

• LIC_NO_ERROR

• The function completed successfully, i.e. the software application is now
activated.

• LIC_ERROR_ACTIVATION_DENIED

• The Licenturion server denied activation. The Serial Number entered by the
end-user has probably reached its maximal number of first-time activations.

• LIC_ERROR_CANCEL

• The end-user pushed the cancel button.

• LIC_ERROR_CANNOT_CREATE_DIALOG

• The dialog box could not be displayed. Make sure that the standard API tries to
access the dialog box resources using the correct resource IDs.

• LIC_ERROR_CANNOT_WRITE_TO_REGISTRY

• The registry key to store the Hardware Hash representing the original hardware
configuration and the Activation Code could not be created or opened.

• The Hardware Hash value or the Activation Code value could not be set in the
created or opened registry key.

• LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION

• The current hardware configuration is too different from the hardware
configuration given by the specified Hardware Hash.

• LIC_ERROR_COMMUNICATION

• The Licenturion server could not be contacted for automatic Product Activation.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• One or more of the dialog controls could not be accessed. Make sure that the
standard API tries to access the dialog controls using the correct control IDs.

• Somebody has illicitly modified the individual score values contained in the
licact.dll file.

38

• The function could not free memory on the process heap.

• The Licenturion server could not decrypt the information transmitted during
automatic Product Activation.

• The Licenturion server sent an unexpected response to our request.

• LIC_ERROR_INVALID_ACTIVATION_CODE

• The Activation Code entered by the end-user or automatically obtained from the
Licenturion server is invalid or does not match the specified Hardware Hash.

• LIC_ERROR_INVALID_HARDWARE_HASH

• An invalid Hardware Hash was specified.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_INVALID_SERIAL_NUMBER

• The end-user entered an invalid Serial Number.

• LIC_ERROR_NOT_ENOUGH_MEMORY

• The function could not allocate memory on the process heap.

Remarks

This function invokes the Activate() function or the AutoActivate() function included in the
advanced API to perform the activation.

39

3.1.5 WinStatus

Displays a dialog box detailing the activation status of your software product.

COM - WinStatus()

No parameters.

DLL - LicWinStatus(ProductId)

Direction Type (C)

ProductId in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_CANNOT_CREATE_DIALOG

• The dialog box could not be displayed. Make sure that the standard API tries to
access the dialog box resources using the correct resource IDs.

• LIC_ERROR_CANNOT_READ_FROM_REGISTRY

• The registry key containing the Hardware Hash representing the original
hardware configuration and the Activation Code could not be opened.

• The Hardware Hash value or the Activation Code value could not be read from
the opened registry key.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• One or more of the dialog controls could not be accessed. Make sure that the
standard API tries to access the dialog controls using the correct control IDs.

• Somebody has illicitly modified the individual score values contained in the
licact.dll file.

• The function could not free memory on the process heap.

• LIC_ERROR_INVALID_ACTIVATION_CODE

• The Activation Code retrieved from the registry is invalid or does not match the
retrieved Hardware Hash.

• LIC_ERROR_INVALID_HARDWARE_HASH

• The Hardware Hash retrieved from the registry is invalid.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY

40

• The function could not allocate memory on the process heap.

Re marks

This function invokes the GetActivationStatus() function included in the advanced API to obtain
the status information.

41

3.1.6 WinResetDialog

Resets the contents of the dialog boxes displayed by WinStep1 and WinStep3.

COM - WinResetDialog()

No parameters.

DLL - LicWinResetDialog(ProductId)

Direction Type (C)

ProductId in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

Remarks

No remarks.

42

3.1.7 CleanRegistry

Deactivates the software product by removing the Hardware Hash representing the original
hardware configuration and the Activation Code stored during activation from the Windows
registry.

COM - CleanRegistry()

No parameters.

DLL - LicCleanRegistry(ProductId)

Direction Type (C)

ProductId in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_CANNOT_DELETE_FROM_REGISTRY

• The registry key that contains the Hardware Hash representing the original
hardware configuration and the Activation Code could not be deleted.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

Remarks

The Hardware Hash representing the original hardware configuration and the Activation Code
are stored in the Windows registry during the activation process by the Activate() function or
the AutoActivate() function included in the advanced API.

43

3.1.8 SplitPayload

This function is passed an Activation Code payload which contains an expiration date. The
expiration date is extracted and compared to the current date. If the Activation Code has not
yet expired, the function succeeds and returns the number of days remaining until the
expiration date and the remaining 19 user-defined bits of the payload.

COM - SplitPayload(Left, PayloadOut, PayloadIn)

Direction Type (C) Type (Visual Basic)

Left out int * Long

PayloadOut out int * Long

PayloadIn in int Long

Description

Left If the function is successful, this parameter receives the number of days
remaining until the expiration date.

PayloadOut If the function is successful, this parameter receives the 19 (least
significant) user-defined bits of the given payload.

PayloadIn Passes the 32-bit payload of the Activation Code.

DLL - LicSplitPayload(ProductId, Left, PayloadOut, PayloadIn)

Direction Type (C)

ProductId in const char *

Left out int *

PayloadOut out int *

PayloadIn in int

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Left Must point to an integer that, if the function is successful, is set to the
number of days remaining until the expiration date.

PayloadOut Must point to an integer that, if the function is successful, is set to the 19
(least significant) user-defined bits of the given payload.

PayloadIn Must be set to the 32-bit payload of the Activation Code.

Result codes

• LIC_NO_ERROR

• The function completed successfully, i.e. the given payload contains an
expiration date that has not yet been reached.

• LIC_ERROR_EXPIRED

• The expiration date in the given payload has been reached, i.e. the Activation
Code has expired.

• The end-user has tried to fool the expiration mechanism by turning back the
system clock.

Remarks

44

No remarks.

45

3.1.9 ErrorString

COM - ErrorString(ResultCode)

Returns the text representation corresponding to the given result code.

Direction Type (C) Type (Visual Basic)

ResultCode in int Long

Description

ResultCode Must be set to the result code for which the text representation is to be
obtained.

DLL - LicErrorString(ResultCode)

Direction Type (C)

ResultCode in int

Description

ResultCode Must be set to the result code for which the text representation is to be
obtained.

Remarks

This function does not return a result code. It returns the text representation as a string.

For the COM component the corresponding type for the returned string is "BSTR" or "String" for
C and Visual Basic, respectively. If there is not enough memory to create the string, an empty
string is returned.

The DLL returns a pointer to the null-terminated ASCII representation of the string. The
corresponding C type is "char *". No memory allocation is necessary in the DLL case, so the
function never fails.

46

3.2 Customizing the user interface

The five dialog boxes used by the standard API are defined by five dialog box resources. For
the COM object and the DLL licact.dll contains default dialog box resources. The static library
does not contain any default dialog box resources and you have to supply them yourself by
linking your executable with your own default dialog box resources. You might want to use the
actres.rc file and its corresponding resource.h file in the Src subdirectory of this ZIP archive as
a starting point.

The default dialog box resources may be overridden to customize the appearance of the user
interface. Your custom dialog box resources can be specified in two ways.

• Tell the standard API to load a DLL containing your custom dialog box resources. That's
what WinLoadResourceDll() does. To unload a loaded resource DLL use
WinFreeResourceDll().

• Tell the standard API to retrieve your custom dialog box resources from an already loaded
module, e.g. an already loaded DLL or your executable. That's what
WinSetResourceInstance() does.

If you override the default dialog box resources, no default dialog box resources are required.
So, if you link against the static library and use one of the above two methods to specify your
custom dialog box resources, you do not need to link against any custom dialog box resources.

Each standard API function dealing with a dialog box accesses the corresponding dialog box
resource using a resource ID as follows.

API function Resource ID

WinStep1() 1972

WinStep2() 1973

WinStep3() - conventional or customized 1974

WinStep3() - automatic 1975

WinStatus() 1976

The main application icon is required to have a resource ID of 1977, the icon on the paste
button of the two WinStep3() dialogs needs to have a resource ID of 1978. If you do not use
an API function then you do not need to care about the corresponding resource IDs.

In the following five screen captures of the default dialog boxes the dialog controls accessed by
the standard API functions have been marked with numbers.

• WinStep1() dialog

1

2

3

• WinStep2() dialog

47

4 5

6 7

• WinStep3() dialogs

8 9 10 11 12 13 14 15

16

29

30

8 9 10 11 30

• WinStatus() dialog

48

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The following table lists the type and the control ID that the standard API expects each of the
30 controls to have.

Type Control ID

1 radio button control 1001

2 radio button control 1002

3 radio button control 1003

4 list box control 1004

5 list box control 1005

6 list box control 1006

7 list box control 1007

8 edit control 1008

9 edit control 1009

10 edit control 1010

11 edit control 1011

12 edit control 1012

13 edit control 1013

14 edit control 1014

15 edit control 1015

Type Control ID

16 edit control 1016

17 edit control 1017

18 edit control 1018

19 edit control 1019

20 edit control 1020

21 edit control 1021

22 edit control 1022

23 edit control 1023

24 edit control 1024

25 edit control 1025

26 edit control 1026

27 edit control 1027

28 edit control 1028

29 static text control 1029

30 button control 1030

Note that the paste button must have the BS_ICON style. Otherwise the standard API will be
unable to assign the icon to the button. The static text control is subclassed by the standard
API and modified to look like a hyperlink.

The OK button is always expected to be a button control and have the standard control ID of 1
(IDOK). Analogously, the cancel button is always expected to be a button control and to have
the standard control ID of 2 (IDCANCEL). All remaining controls may have arbitrary types and
control IDs as the standard API only touches the 30 marked controls as well as the OK button
and the cancel button.

49

If you prefer to assign different resource IDs - e.g. if your software applications already uses
one or more of the resource IDs 1972 through 1978 for different purposes - or different control
IDs, you have to tell the standard API which IDs you use by calling the WinMapIdValues()
function. This function can also be used to switch to a plain paste button without the BS_ICON
style, to disable support for the paste button, or to disable support for the hyperlink.

Customizing the standard API may lead to errors, e.g. wrongly assigned control IDs, that can
be a bit tricky to track down. The WinEnableDebug() function assists you in determining
whether you have assigned the right control IDs to your dialog controls. Just call this function
before invoking any other standard API function. Message boxes will then tell you what the
data extracted from the dialog by the standard API functions, e.g. the Serial Number, looks
like.

By default the desktop window is used as the parent window for all standard API dialog boxes.
The WinSetParent() function selects an alternative parent window.

The default registry keys for storing the Activation Code and the Hardware Hash during the
activation process can be overridden by calling SetRegistryInfo().

IMPORTANT: CleanRegistry() does not only remove the created values from the registry, but
also the key that contains the values. In the default case, for example, the "XXXXXXXX"
subkey would be removed. Keep this in mind when overriding the default registry keys.

The only aspect that requires additional customization is the text assigned to each
characteristic by WinStatus(). The default "added", "removed", "changed", "missing + match",
and "present + match" may be overridden with the WinMapStatusTexts() function as well as
the "yes" and "no" status that indicates whether the computer is recognized as a notebook
computer.

The top-level directory of this ZIP archive contains subdirectories with example source code
that illustrate the customization of the standard API.

Subdirectory Contents

ResourceDll Source code for a resource DLL that localizes the user interface of the
standard API to German. Simply pass it to WinLoadResourceDll().

Standard Compact C source code. Simply uncomment the customization
functions.

The top-level directory also contains a Visual C++ workspace (Examples.dsw).

50

3.2.1 WinLoadResourceDll

Loads the resource DLL that contains the dialog box resources to be used by WinStep1(),
WinStep2(), WinStep3(), and WinStatus().

COM - WinLoadResourceDll(DllPath)

Direction Type (C) Type (Visual Basic)

DllPath in BSTR String

Description

DllPath Passes the path of the DLL to be loaded to the function. For relative paths
the DLL is located as specified for the LoadLibrary() function included in
the Win32 API.

DLL - LicWinLoadResourceDll(ProductId, DllPath)

Direction Type (C)

ProductId in const char *

DllPath in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

DllPath Must point to a null-terminated ASCII string specifying the path of the DLL
to be loaded. For relative paths the DLL is located as specified for the
LoadLibrary() function included in the Win32 API.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_LIBRARY_NOT_FOUND

• The specified DLL file could not be found.

• LIC_ERROR_STRING_TOO_LONG (COM only)

• The specified path was longer than 260 characters.

Remarks

WinFreeResourceDll() should be used to unload the resource DLL when it is not needed any
longer.

WinSetResourceInstance() takes precedence over this function.

51

3.2.2 WinFreeResourceDll

Unloads a resource DLL previously loaded with WinLoadResourceDll().

COM - WinFreeResourceDll()

No parameters.

DLL - LicWinFreeResourceDll(ProductId)

Direction Type (C)

ProductId in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_NO_LIBRARY_LOADED

• No library was loaded.

Remarks

No remarks.

52

3.2.3 WinSetResourceInstance

Tells WinStep1(), WinStep2(), WinStep3(), and WinStatus() to retrieve the required dialog box
resources from the given module.

COM - WinSetResourceInstance(Inst)

Direction Type (C) Type (Visual Basic)

Inst in int Long

Description

Inst Passes the instance handle of the module to the function. As instance
handles are not supported by COM it has to be cast to an integer. Set this
parameter to zero to clear a previously set instance.

DLL - LicWinSetResourceInstance(ProductId, Inst)

Direction Type (C)

ProductId in const char *

Inst in HINSTANCE

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Inst Must be set to the instance handle of the module. Set this parameter to
zero to clear a previously set instance.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

Remarks

This function takes precedence over WinLoadResourceDll(). If you have used
WinSetResourceInstance(), invoke it with an Inst parameter of zero before loading a resource
DLL.

53

3.2.4 WinMapIdValues

Tells WinStep1(), WinStep2(), WinStep3(), and WinStatus() to use the given resource IDs and
control IDs instead of the default to access dialog box resources and dialog controls.

COM - WinMapIdValues(Values)

Direction Type (C) Type (Visual Basic)

Values in SAFEARRAY(int) * Array of Long

Description

Values Passes an array with 37 values and an index range from 0 through 36 to
the function. The first five elements (index 0 through 4) in this array
specify the new resource IDs of the five dialog boxes. The sixth element
(index 5) specifies the new resource ID of the main application icon. The
seventh element (index 6) specifies the new resource ID of the paste
button icon. The remaining 30 elements (index 7 through 36) specify the
new control IDs to be used for accessing the dialog controls. All IDs must
be ordered according to the tables given in section 3.2. For the default
settings this array would thus contain (1972, 1973, 1974, 1975, 1976,
1977, 1978, 1001, 1002, 1003, ..., 1029, 1030).

DLL - LicWinMapIdValues(ProductId, Values, Length)

Direction Type (C)

ProductId in const char *

Values in int *

Length in int

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Values Must point to an array of 37 integers. The first five elements (index 0
through 4) in this array specify the new resource IDs of the five dialog
boxes. The sixth element (index 5) specifies the new resource ID of the
main application icon. The seventh element (index 6) specifies the new
resource ID of the paste button icon. The remaining 30 elements (index 7
through 36) specify the new control IDs to be used for accessing the
dialog controls. All IDs must be ordered according to the tables given in
section 3.2. For the default settings this array would thus contain (1972,
1973, 1974, 1975, 1976, 1977, 1978, 1001, 1002, 1003, ..., 1029, 1030).

Length Must be set to the number of elements in the Values array, i.e. to 37.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• The SAFEARRAY could not be accessed (COM only).

• LIC_ERROR_INVALID_ARRAY_FORMAT

54

• The specified array had more or less than 37 elements.

• The first element of the specified array had an index different from 0. (COM
only)

• The elements of the specified array had an invalid type. (COM only)

• The specified array was not one-dimensional. (COM only)

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

Remarks

If the resource ID of the paste icon (index 6) is set to zero, the standard API does not try to
assign any icon to the paste button. Set this array element to zero if you use a standard paste
button with a text caption.

If the control ID of the paste button (index 36) is set to zero, the standard API skips the
handling of messages related to the paste button. Set this array element to zero if you use
WinStep3 dialog boxes without paste button.

If the control ID of the static text control (index 35) is set to zero, the standard API does not
try to convert the static text control into a hyperlink. Set this array element to zero if you do
not want your WinStep3 dialog box for conventional or customized Product Activation to
contain the hyperlink to the activation web-site.

If the resource ID of the main application icon (index 5) is set to zero, the standard API does
not try to set the application icon with WM_SETICON.

55

3.2.5 WinMapStatusTexts

Tells WinStatus() to use the given status strings instead of the default.

COM - WinMapStatusTexts(Texts)

Direction Type (C) Type (Visual Basic)

Texts in SAFEARRAY(BSTR) * Array of String

Description

Texts Passes an array with 7 strings and an index range from 0 through 6 to the
function. The first 5 elements of the array (index 0 through 4) replace the
"added", "removed", "changed", "missing + match", and "present +
match" status strings. The remaining 2 elements (index 5 and 6) replace
the "yes" and "no" status strings used to indicate whether the computer is
considered a notebook computer. The strings must not be longer than 50
characters.

DLL - LicWinMapStatusTexts(ProductId, Texts)

Direction Type (C)

ProductId in const char *

Texts in const char const **

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Texts Must point to an array of 7 pointers to null-terminated ASCII strings. The
first 5 strings replace the "added", "removed", "changed", "missing +
match", and "present + match" status strings. The remaining 2 strings
replace the "yes" and "no" status strings used to indicate whether the
computer is considered a notebook computer. The strings must not be
longer than 50 characters excluding the terminating null character.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• The SAFEARRAY could not be accessed (COM only).

• LIC_ERROR_INVALID_ARRAY_FORMAT (COM only)

• The specified array had more or less than 7 elements.

• The first element of the specified array had an index different from 0.

• The elements of the specified array had an invalid type.

• The specified array was not one-dimensional.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

56

• LIC_ERROR_STRING_TOO_LONG

• One of the specified strings was longer than 50 characters.

Remarks

No remarks.

57

3.2.6 SetRegistryInfo

Specifies the two registry keys to be used for storing the Hardware Hash and the Activation
Code during the activation process.

IMPORTANT: CleanRegistry does not only remove the created values from the registry, but
also the key that contains the values. In the default case, for example, the "XXXXXXXX"
subkey would be removed. Keep this in mind when using SetRegistryInfo to override the
default registry keys.

COM - SetRegistryInfo(Key1, Path1, Key2, Path2)

Direction Type (C) Type (Visual Basic)

Key1 in int Long

Path1 in BSTR String

Key2 in int Long

Path2 in BSTR String

Description

Key1 Passes the registry key to serve as the root for the Path1 parameter. Must
be set to one of the following seven constants.

• LIC_HKEY_CLASSES_ROOT
• LIC_HKEY_CURRENT_USER
• LIC_HKEY_LOCAL_MACHINE
• LIC_HKEY_USERS
• LIC_HKEY_PERFORMANCE_DATA
• LIC_HKEY_CURRENT_CONFIG
• LIC_HKEY_DYN_DATA

Path1 Passes the path of the registry key to be used for storing the activation
information. This parameter is relative to the key given by the Key1
parameter. The string length must not exceed 500 characters.

Key2 The equivalent to Key1 for the fallback location.

Path2 The equivalent to Path1 for the fallback location.

DLL - LicSetRegistryInfo(ProductId, Key1, Path1, Key2, Path2)

Direction Type (C)

ProductId in const char *

Key1 in int

Path1 in const char *

Key2 in int

Path2 in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

58

Description

Key1 Specifies the registry key to serve as the root for the Path1 parameter.
Must be set to one of the following seven constants.

• LIC_HKEY_CLASSES_ROOT
• LIC_HKEY_CURRENT_USER
• LIC_HKEY_LOCAL_MACHINE
• LIC_HKEY_USERS
• LIC_HKEY_PERFORMANCE_DATA
• LIC_HKEY_CURRENT_CONFIG
• LIC_HKEY_DYN_DATA

Path1 Must point to a null-terminated ASCII string specifying the path of the
registry key to be used for storing the activation information. This
parameter is relative to the key given by the Key1 parameter. The string
length must not exceed 500 characters excluding the terminating null
character.

Key2 The equivalent to Key1 for the fallback location.

Path2 The equivalent to Path1 for the fallback location.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_STRING_TOO_LONG

• One of the specified paths was longer than 500 characters.

Remarks

The location specified by Key1 and Path1 is tried first. If this location cannot be written to
(store) or does not contain any activation information (retrieve) the location specified by Key2
and Path2 is tried. The idea is to have Key1 and Path1 specify a location that requires
administrative privileges on NT-based operating systems. If the end-user is not logged in as an
administrator, Key2 and Path2 provide the fallback location. By default the location tried first is

HKEY_LOCAL_MACHINE\SOFTWARE\Licenturion GmbH\XXXXXXXX

with

HKEY_CURRENT_USER\SOFTWARE\Licenturion GmbH\XXXXXXXX

as the fallback location. The eight "X" characters represent the Product ID of the product that
the activation information belongs to.

The LIC_HKEY_* constants are derived from the Windows HKEY_* constants by clearing the
most significant bit. The Windows constant 0x80000002 (HKEY_LOCAL_MACHINE), for
example, thus becomes 2 (LIC_HKEY_LOCAL_MACHINE). We use the proprietary LIC_HKEY_*
constants to have low constants that are also nicely representable in decimal notation.

To instruct, for example, the standard and advanced APIs to use

59

HKEY_CURRENT_USER\SOFTWARE\My Company\My Product\Activation

as the fallback location for storing the activation information, pass

• LIC_HKEY_LOCAL_MACHINE as Key2 and

• "SOFTWARE\My Company\My Product\Activation" as Path2

to this function.

IMPORTANT: Remember that in this example calling CleanRegistry will delete the "Activation"
subkey!

60

3.2.7 WinEnableDebug

Enables debug message boxes that display the data retrieved from the dialog boxes.

COM - WinEnableDebug()

No parameters.

DLL - LicWinEnableDebug(ProductId)

Direction Type (C)

ProductId in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

Remarks

No remarks.

61

3.2.8 WinSetParent()

Specifies the parent window for all dialog boxes displayed by the standard API.

COM - WinSetParent(Win)

Direction Type (C) Type (Visual Basic)

Win in int Long

Description

Win Passes the window handle of the desired parent window to the function.
As window handles are not supported by COM it has to be cast to an
integer.

DLL - LicWinSetParent(ProductId, Win)

Direction Type (C)

ProductId in const char *

Win in HWND

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Win Must be set to the window handle of the desired parent window.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

Remarks

No remarks.

62

4 The advanced API

The advanced API offers low-level functionality that enables you to create a HardwareHash
representing the current hardware configuration and to perform an activation with this
HardwareHash and a given Serial Number (automatic Product Activation) or a given Activation
Code (conventional Product Activation or customized Product Activation). Moreover you may
obtain detailed information about the current activation status of your software application.

Let's first have a look at how a Hardware Hash representing the present hardware
configuration is created. As discussed before a Hardware Hash comprises nine characteristics.
For each of the nine characteristics a set of candidates is determined and then for each
characteristic one candidate of its candidate set is selected for inclusion in the Hardware Hash.
Consider the example of the make and model of one of the installed harddrives. For this
characteristic the set of candidates consists of the makes and models of all installed
harddrives. From among these candidates one candidate, i.e. the make and model of one of
the installed harddrives, is selected to be included in the Hardware Hash. In case of automatic
or conventional Product Activation the selection is done without intervention of the end-user.
In case of customized Product Activation the end-user is allowed to select the candidate to be
included in the Hardware Hash for each characteristic. All this is achieved using five functions.

• CollectCandidates() determines the candidates for all nine characteristics and preselects a
default candidate for each characteristic.

• GetCandidate() retrieves one of the candidates for a given characteristic and indicates
whether the retrieved candidate is selected. Using this function you can enumerate all
candidates for each characteristic and present them to the end-user to implement
customized Product Activation. Each candidate is identified by an index value. Invoke this
function with an index of 0 to obtain the first candidate, invoke this function with an index
of 1 to obtain the second candidate, etc. Repeat this until the function returns an error code
indicating that the specified index is invalid, which means that there are no more candidates
left to be enumerated.

• SelectCandidate() selects a candidate for a given characteristic. Use this function to reflect
your end-user's choice when implementing customized Product Activation. Candidates are
identified analogously to GetCandidate(), i.e. by the same index values.

• CreateHardwareHash() creates a Hardware Hash based on the selected candidate from
each group.

• FreeCandidates() releases the candidates collected by CollectCandidates() when they are
no longer needed, i.e. after the Hardware Hash has been created.

For conventional Product Activation GetCandidate() and SelectCandidate() are not needed. Just
stick to the candidates automatically preselected by CollectCandidates().

To implement conventional or customized Product Activation display the created Hardware
Hash to your end-user and ask him or her for his or her Activation Code. Then pass both to the
Activate() function to perform the activation. If the given Activation Code is valid for the
given Hardware Hash, both are stored in the Windows registry.

To implement automatic Product Activation ask your end-user for his or her Serial Number and
pass it along with the created Hardware Hash to AutoActivate(). The function contacts the
Licenturion server, transmits the Serial Number and the Hardware Hash, obtains the Activation
Code, and, if the obtained Activation Code is valid for the given Hardware Hash, stores the
Activation Code along with the Hardware Hash in the Windows registry.

Just like the standard API the advanced API uses

HKEY_LOCAL_MACHINE\SOFTWARE\Licenturion GmbH\XXXXXXXX

and, if this fails, falls back to

63

HKEY_CURRENT_USER\SOFTWARE\Licenturion GmbH\XXXXXXXX

for storing and retrieving the Hardware Hash and the Activation Code for the software
application.

The registry keys used for storing the activation information can be overridden, as was the
case for the standard API before, with SetRegistryInfo().

To obtain details of the activation state of your software application, call GetActivationStatus
(), which returns things like the state of each characteristic, the corresponding individual score
values, etc. It retrieves the activation information from the registry and compares the
hardware configuration represented by the retrieved Hardware Hash with the current hardware
configuration.

Manual deactivation is done by calling the CleanRegistry() function included in the standard
API. To check whether your software application is already activated use the CheckActivation
() function, which is also included in the standard API. Both functions have been discussed
before.

If you prefer to handle the activation information yourself instead of having the advanced API
store it for you in the Windows registry, use the SimpleCheckActivation() instead of Activate
() and CheckActivation(), SimpleAutoActivate() instead of AutoActivate(), and
SimpleGetActivationStatus() instead of GetActivationStatus(). These functions do not store
and retrieve the activation information in and from the Windows registry. Instead the
information is passed as input and output parameters to and from the functions.

Conventional and customized Product Activation would be implemented as follows.

• Generate a Hardware Hash as described above and display it to your end-user.

• Ask the end-user for his or her Activation Code.

• Pass the Activation Code and the Hardware Hash to SimpleCheckActivation() to
verify the validity of the Activation Code.

• If the Activation Code is valid, store it along with the Hardware Hash.

Automatic Product Activation would require the following steps.

• Generate a Hardware Hash as described above.

• Ask the end-user for his or her Serial Number.

• Pass the Serial Number and the Hardware Hash to SimpleAutoActivate().

• If SimpleAutoActivate() succeeds, it returns a valid Activation Code. Store it
along with the Hardware Hash.

To find out whether your software application is activated, retrieve the stored activation
information and verify that it is valid by passing it to SimpleCheckActivation().

IMPORTANT: If we did not verify the validity of the retrieved activation information, a
software pirate could - instead of activating - store arbitrary data at the location that our
software application uses to store the activation information, e.g. in the Windows registry. So,
do not rely on the activation information just "being there." The retrieved data could be
anything. Make sure that it really is valid activation information.

IMPORTANT: Verifying the activation information only once during activation, then setting an
"I am activated" flag, e.g. in the Windows registry, and just verifying whether this flag is set to
determine whether our software application is activated is also a bad idea. A software pirate
could just set this flag himself or herself and trick your software application into believing that
it has already been activated. Always store and verify the full activation information. In
contrast to a simple flag, it is computationally infeasible to fake activation information.

64

For a detailed view of the activation state of your application retrieve the activation information
and pass it to SimpleGetActivationStatus().

The six functions that operate on Activation Codes - SimpleCheckActivation(),
SimpleGetActivationStatus(), GetActivationStatus(), SimpleAutoActivate(), AutoActivate(), and
Activate() - also return, if successful, the 32-bit payload embedded in the handled Activation
Code. As has been described for the standard API, use SplitPayload() if you have instructed
the Licenturion server to use the most significant 13 bits of the payload to carry an expiration
date for the Activation Code.

The top-level directory of this ZIP archive contains subdirectories with example source code
that illustrate the application of the advanced API.

Subdirectory Contents

ActWiz Rather large C++ source code that uses the static library. The
compiled executable can be found in the top-level directory of this ZIP
archive (ActWiz.exe).

Console Compact C source code that uses the DLL. The compiled executable
can be found in the top-level directory of this ZIP archive
(Console.exe).

Status Compact C source code that uses the DLL. The compiled executable
can be found in the top-level directory of this ZIP archive
(Status.exe).

The top-level directory also contains a Visual C++ workspace (Examples.dsw).

65

4.1 CollectCandidates

Create a collection of all candidates for all characteristics and preselect a default candidate for
each characteristic.

COM - CollectCandidates(CandHand)

Direction Type (C) Type (Visual Basic)

CandHand out int * Long

Description

CandHand If the function succeeds, this parameter receives the handle identifying
the created collection of candidates.

DLL - LicCollectCandidates(ProductId, CandHand)

Direction Type (C)

ProductId in const char *

CandHand out unsigned long *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

CandHand Must point to an integer that, if the function succeeds, receives the handle
identifying the created collection of candidates.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY

• The function could not allocate memory on the process heap.

Remarks

The obtained handle is used to specify the created collection of candidates in subsequent calls
to GetCandidate(), SelectCandidate(), and CreateHardwareHash(). If the collection of
candidates is not required any longer, use FreeCandidates() to release it.

The handle actually is a pointer to a heap location. It is thus only valid in a given process
context.

66

4.2 GetCandidate

Retrieves from the given collection of candidates the specified candidate of the specified
characteristic.

COM - GetCandidate(String, Selected, CandHand, Char, Index)

Direction Type (C) Type (Visual Basic)

String out BSTR * String

Selected out int * Long

CandHand in int Long

Char in int Long

Index in int Long

Description

String If the function succeeds, this string receives the text representation of the
specified candidate of the specified characteristic.

Selected If the function succeeds, this parameter is set to 1 if the specified
candidate is the currently selected candidate of the specified characteristic
and otherwise set to 0.

CandHand Passes the handle identifying the collection of candidates to be operated
on.

Char Passes the characteristic that the candidate to be retrieved is associated
with. The values identifying the nine characteristics are as follows.

• LIC_HARDDRIVE
• LIC_CD_ROM_DRIVE
• LIC_MASS_STORAGE_CONTROLLER
• LIC_GRAPHICS_ADAPTER
• LIC_CPU_TYPE
• LIC_MEMORY_SIZE
• LIC_VOLUME_SERIAL_NUMBER
• LIC_CPU_SERIAL_NUMBER
• LIC_MAC_ADDRESS

Index Passes the index of the candidate to be retrieved for the specified
characteristic (see below remarks).

DLL - LicGetCandidate(ProductId, String, Selected, CandHand, Char, Index)

Direction Type (C)

ProductId in const char *

String out char **

Selected out int *

CandHand in unsigned long

Char in int

Index in int

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

67

Description

String Must point to a string pointer that, if the function succeeds, is set to point
to a null-terminated ASCII string giving the text representation of the
specified candidate of the specified characteristic.

Selected Must point to an integer that, if the function succeeds, is set to 1 if the
specified candidate is the currently selected candidate of the specified
characteristic and otherwise set to 0.

CandHand Must be set to the handle identifying the collection of candidates to be
operated on.

Char Must be set to the characteristic that the candidate to be retrieved is
associated with. The following nine values identify the nine characteristics.

• LIC_HARDDRIVE
• LIC_CD_ROM_DRIVE
• LIC_MASS_STORAGE_CONTROLLER
• LIC_GRAPHICS_ADAPTER
• LIC_CPU_TYPE
• LIC_MEMORY_SIZE
• LIC_VOLUME_SERIAL_NUMBER
• LIC_CPU_SERIAL_NUMBER
• LIC_MAC_ADDRESS

Index Must be set to the index of the candidate to be retrieved for the specified
characteristic (see below remarks).

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INVALID_INDEX

• A candidate with the specified index does not exist for the specified
characteristic.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY (COM only)

• The function could not allocate memory on the process heap.

Remarks

The handle identifying the collection of candidates must be obtained from CollectCandidates().

Let us assume you would like to enumerate and print all candidates for the "make and model
of one of the installed harddrives" characteristic. You would the proceed as follows.

1. Define an integer variable i and set i = 0.

2. Invoke CollectCandidates() to create a collection of candidates and obtain the associated
handle.

3. Invoke GetCandidate() with the handle obtained in the previous step, the Char parameter
set to LIC_HARDDRIVE, and the Index parameter set to i.

4. If the return value is LIC_ERROR_INVALID_INDEX then continue with step 8.

68

5. Print the text representation of the candidate as returned via the String parameter.

6. Set i = i + 1.

7. Go back to step 3.

8. Invoke FreeCandidates() with the handle obtained in step 2.

9. That's it.

69

4.3 SelectCandidate

Selects in the given collection of candidates the specified candidate of the specified
characteristic for inclusion in the Hardware Hash.

COM - SelectCandidate(CandHand, Char, Index)

Direction Type (C) Type (Visual Basic)

CandHand in int Long

Char in int Long

Index in int Long

Description

CandHand Passes the handle identifying the collection of candidates to be operated
on.

Char Passes the characteristic for which the candidate is to be selected. The
values identifying the nine characteristics are as follows.

• LIC_HARDDRIVE
• LIC_CD_ROM_DRIVE
• LIC_MASS_STORAGE_CONTROLLER
• LIC_GRAPHICS_ADAPTER
• LIC_CPU_TYPE
• LIC_MEMORY_SIZE
• LIC_VOLUME_SERIAL_NUMBER
• LIC_CPU_SERIAL_NUMBER
• LIC_MAC_ADDRESS

Index Passes the index of the candidate to be selected for the specified
characteristic.

DLL - LicSelectCandidate(ProductId, CandHand, Char, Index)

Direction Type (C)

ProductId in const char *

CandHand in unsigned long

Char in int

Index in int

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

CandHand Must be set to the handle identifying the collection of candidates to be
operated on.

70

Description

Char Must be set to the characteristic for which the candidate is to be selected.
The values identifying the nine characteristics are as follows.

• LIC_HARDDRIVE
• LIC_CD_ROM_DRIVE
• LIC_MASS_STORAGE_CONTROLLER
• LIC_GRAPHICS_ADAPTER
• LIC_CPU_TYPE
• LIC_MEMORY_SIZE
• LIC_VOLUME_SERIAL_NUMBER
• LIC_CPU_SERIAL_NUMBER
• LIC_MAC_ADDRESS

Index Must be set to the index of the candidate to be selected for the specified
characteristic.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INVALID_INDEX

• A candidate with the specified index does not exist for the specified
characteristic.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

Remarks

The handle identifying the collection of candidates must be obtained from CollectCandidates().

GetCandidate() and SelectCandidate() use the same index values to identify candidates for a
given characteristic.

71

4.4 CreateHardwareHash

Creates a Hardware Hash based on the nine candidates selected for the nine characteristics.

COM - CreateHardwareHash(HardwareHash, CandHand)

Direction Type (C) Type (Visual Basic)

HardwareHash out BSTR * String

CandHand in int Long

Description

HardwareHash If the function succeeds, this string receives the generated Hardware
Hash.

CandHand Passes the handle identifying the collection of candidates to be operated
on.

DLL - LicCreateHardwareHash(ProductId, HardwareHash, CandHand)

Direction Type (C)

ProductId in const char *

HardwareHash out char *

CandHand in unsigned long

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

HardwareHash Must point to a 15-byte buffer that, if the function is successful, receives
the generated Hardware Hash as a null-terminated ASCII string.

CandHand Must be set to the handle identifying the collection of candidates to be
operated on.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY (COM only)

• The function could not allocate memory on the process heap.

Remarks

No remarks.

72

4.5 FreeCandidates

Releases the specified collection of candidates.

COM - FreeCandidates(CandHand)

Direction Type (C) Type (Visual Basic)

CandHand in int Long

Description

CandHand Passes the handle identifying the collection of candidates to be released.

DLL - LicFreeCandidates(ProductId, CandHand)

Direction Type (C)

ProductId in const char *

CandHand in unsigned long

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

CandHand Must be set to the handle identifying the collection of candidates to be
released.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_INTERNAL

• The function could not free heap memory. Perhaps you passed an invalid handle
or tried to release the same collection of candidates more than once.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

Remarks

No remarks.

73

4.6 Activate

Activates your software application using the specified Hardware Hash and Activation Code
and, if the Activation Code matches the Hardware Hash, returns the payload contained in the
Activation Code.

COM - Activate(Payload, HardwareHash, ActivationCode)

Direction Type (C) Type (Visual Basic)

Payload out int * Long

HardwareHash in BSTR String

ActivationCode in BSTR String

Description

Payload If the function succeeds, this parameter receives the payload carried by
the supplied ActivationCode parameter.

HardwareHash Passes the Hardware Hash.

ActivationCode Passes the Activation Code.

DLL - LicActivate(ProductId, Payload, HardwareHash, ActivationCode)

Direction Type (C)

ProductId in const char *

Payload out int *

HardwareHash in const char *

ActivationCode in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Payload Must point to an integer that, if the the function is successful, receives the
payload carried by the supplied ActivationCode parameter.

HardwareHash Must point to a null-terminated ASCII string specifying the Hardware
Hash.

ActivationCode Must point to a null-terminated ASCII string specifying the Activation
Code.

Result codes

• LIC_NO_ERROR

• The function completed successfully, i.e. the software application is now
activated.

• LIC_ERROR_CANNOT_WRITE_TO_REGISTRY

• The registry key to store the Hardware Hash representing the original hardware
configuration and the Activation Code could not be created or opened.

• The Hardware Hash value or the Activation Code value could not be set in the
created or opened registry key.

• LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION

74

• The current hardware configuration is too different from the hardware
configuration given by the specified Hardware Hash.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• Somebody has illicitly modified the individual score values contained in the
licact.dll file.

• The function could not free memory on the process heap.

• LIC_ERROR_INVALID_ACTIVATION_CODE

• The passed Activation Code is invalid or does not match the specified Hardware
Hash.

• LIC_ERROR_INVALID_HARDWARE_HASH

• An invalid Hardware Hash was specified.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY

• The function could not allocate memory on the process heap.

Remarks

If the Activation Code matches the Hardware Hash, both strings are stored in the Windows
registry, turning the software product into activated state.

75

4.7 AutoActivate

Activates your software application using the specified Hardware Hash and Serial Number by
contacting the Licenturion server and obtaining an Activation Code. If the Activation Code
matches the Hardware Hash and the original hardware configuration as represented by the
Hardware Hash sufficiently resembles the current hardware configuration, the function
succeeds and returns the payload contained in the Activation Code.

COM - AutoActivate(Payload, SerialNumber, HardwareHash)

Direction Type (C) Type (Visual Basic)

Payload out int * Long

SerialNumber in BSTR String

HardwareHash in BSTR String

Description

Payload If the function succeeds, this parameter receives the payload carried by
the supplied ActivationCode parameter.

SerialNumber Passes the Serial Number.

HardwareHash Passes the Hardware Hash.

DLL - LicAutoActivate(ProductId, Payload, SerialNumber, HardwareHash)

Direction Type (C)

ProductId in const char *

Payload out int *

SerialNumber in const char *

HardwareHash in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Payload Must point to an integer that, if the the function is successful, receives the
payload carried by the supplied ActivationCode parameter.

SerialNumber Must point to a null-terminated ASCII string specifying the Serial Number.

HardwareHash Must point to a null-terminated ASCII string specifying the Hardware
Hash.

Result codes

• LIC_NO_ERROR

• The function completed successfully, i.e. the software application is now
activated.

• LIC_ERROR_ACTIVATION_DENIED

• The Licenturion server denied activation. The passed Serial Number has
probably reached its maximal number of first-time activations.

• LIC_ERROR_CANNOT_WRITE_TO_REGISTRY

• The registry key to store the Hardware Hash representing the original hardware
configuration and the Activation Code could not be created or opened.

76

• The Hardware Hash value or the Activation Code value could not be set in the
created or opened registry key.

• LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION

• The current hardware configuration is too different from the hardware
configuration given by the specified Hardware Hash.

• LIC_ERROR_COMMUNICATION

• The Licenturion server could not be contacted.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• Somebody has illicitly modified the individual score values contained in the
licact.dll file.

• The function could not free memory on the process heap.

• The Licenturion server could not decrypt our request.

• The Licenturion server sent an unexpected response to our request.

• LIC_ERROR_INVALID_ACTIVATION_CODE

• The Activation Code obtained from the Licenturion server is invalid or does not
match the specified Hardware Hash.

• LIC_ERROR_INVALID_HARDWARE_HASH

• An invalid Hardware Hash was specified.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_INVALID_SERIAL_NUMBER

• An invalid Serial Number was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY

• The function could not allocate memory on the process heap.

Remarks

The obtained Activation Code and the Hardware Hash are stored in the Windows registry,
turning the software product into activated state.

The necessary communication with the Licenturion server consists of a single HTTP POST
request to port 80 of the server and the corresponding HTTP response. The request contains a
Server Cookie (see section 1.1.4), which is an encrypted representation of the given Serial
Number and the given Hardware Hash. The response is a plain ASCII file that contains the
Activation Code. We have chosen to implement our own encryption scheme on top of HTTP as
HTTPS traffic is typically restricted by corporate firewalls. Encryption is necessary as Serial
Numbers have to be protected against eavesdroppers while they traverse the Internet.
Otherwise a software pirate could just break into a computer topologically close to the
Licenturion server and harvest lots of valid Serial Numbers.

The link to the Licenturion server is established using the WinINet API. The settings of Internet
Explorer, e.g. proxy settings, are thus respected.

77

4.8 GetActivationStatus

Provides a detailed view of the activation state of your software application. The function
retrieves the Activation Code and the Hardware Hash representing the original hardware
configuration from the Windows registry, validates the Activation Code, and compares the
original hardware configuration to the current hardware configuration.

COM - GetActivationStatus(Stat, Scores, Total, Threshold, Notebook)

Direction Type (C) Type (Visual Basic)

Stat out SAFEARRAY
(unsigned char) *

Array of Byte

Scores out SAFEARRAY(int) * Array of Long

Total out int * Long

Threshold out int * Long

Notebook out int * Long

Description

Stat If the function succeeds, this array receives the states of the nine
characteristics. Each array element is set to one of the following five
values to indicate one of the five possible states.

• LIC_STATUS_ADDED
• LIC_STATUS_REMOVED
• LIC_STATUS_CHANGED
• LIC_STATUS_MISSING_AND_MATCHING
• LIC_STATUS_PRESENT_AND_MATCHING

The nine elements of this array map to the characteristics as follows.

• index 0: make and model of one of the installed harddrives
• index 1: make and model of one of the installed CD-ROM drives
• index 2: make and model of one of the installed SCSI host adapters or

IDE controllers
• index 3: make and model of one of the installed graphics boards
• index 4: make and model of the first CPU in the computer
• index 5: size of the installed RAM
• index 6: volume serial number of one of the available disk volumes
• index 7: CPU serial number of the first CPU in the computer
• index 8: Ethernet address of one of the installed Ethernet adapters

Scores If the function succeeds, this array receives the individual score values
assigned to the nine characteristics. The nine elements have the index
values 0 to 8 and map to the characteristics in the same way as specified
for the elements of the above Stat array.

Total If the function succeeds, this parameter receives the total score value
calculated by the scoring mechanism by adding all individual score values.

Threshold If the function succeeds, this parameter receives the total score value
required to consider this software product activated.

Notebook If the function succeeds, the parameter is set to 1 if the computer is
considered to be a notebook computer and otherwise set to 0.

DLL - LicGetActivationStatus(ProductId, Stat, Scores, Total, Threshold, Notebook)

78

Direction Type (C)

ProductId in const char *

Stat out unsigned char *

Scores out int *

Total out int *

Threshold out int *

Notebook out int *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Stat Must point to a buffer of nine bytes that, if the function succeeds, receives
the states of the nine characteristics. Each byte in the buffer is set to one
of the following five values to indicate one of the five possible states.

• LIC_STATUS_ADDED
• LIC_STATUS_REMOVED
• LIC_STATUS_CHANGED
• LIC_STATUS_MISSING_AND_MATCHING
• LIC_STATUS_PRESENT_AND_MATCHING

The nine bytes in this buffer map to the characteristics as follows.

• index 0: make and model of one of the installed harddrives
• index 1: make and model of one of the installed CD-ROM drives
• index 2: make and model of one of the installed SCSI host adapters or

IDE controllers
• index 3: make and model of one of the installed graphics boards
• index 4: make and model of the first CPU in the computer
• index 5: size of the installed RAM
• index 6: volume serial number of one of the available disk volumes
• index 7: CPU serial number of the first CPU in the computer
• index 8: Ethernet address of one of the installed Ethernet adapters

Scores Must point to a buffer with space for nine integers that, if the function
succeeds, receives the individual score values assigned to the nine
characteristics. The nine integers map to the characteristics in the same
order as specified for the elements of the above Stat buffer.

Total Must point to an integer that, if the function succeeds, is set to the total
score value calculated by the scoring mechanism by adding all individual
score values.

Threshold Must point to an integer that, if the function succeeds, is set to the total
score value required to consider this software product activated.

Notebook Must point to an integer that, if the function succeeds, is set to 1 if the
computer is considered to be a notebook computer and otherwise set to 0.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_CANNOT_READ_FROM_REGISTRY

79

• The registry key containing the Hardware Hash representing the original
hardware configuration and the Activation Code could not be opened.

• The Hardware Hash value or the Activation Code value could not be read from
the opened registry key.

• LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION

• The current hardware configuration is too different from the original hardware
configuration given by the retrieved Hardware Hash.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• Somebody has illicitly modified the individual score values contained in the
licact.dll file.

• The function could not free memory on the process heap.

• One of the SAFEARRAYs could not be accessed (COM only).

• LIC_ERROR_INVALID_ACTIVATION_CODE

• The Activation Code retrieved from the registry is invalid or does not match the
retrieved Hardware Hash.

• LIC_ERROR_INVALID_HARDWARE_HASH

• The Hardware Hash retrieved from the registry is invalid.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY

• The function could not allocate memory on the process heap.

Remarks

The function is successful if it either returns either LIC_NO_ERROR or
LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION. In the former case, your software
application is considered activated. In the latter case substantial hardware changes have been
applied to the computer since activation that invalidate the activation. Your software
application is not activated but the Stat, Scores, Total, Threshold, and Notebook parameters
have still been set to the correct values.

80

4.9 SimpleCheckActivation

This function behaves like CheckActivation. The only difference is that it does not try to
retrieve the Activation Code and the Hardware Hash from the Windows Registry. Both are
passed as parameters instead.

COM - SimpleCheckActivation(Payload, HardwareHash, ActivationCode)

Direction Type (C) Type (Visual Basic)

Payload out int * Long

HardwareHash in BSTR String

ActivationCode in BSTR String

Description

Payload If he function is successful, this parameter receives the 32-bit payload of
the given Activation Code.

HardwareHash Passes the Hardware Hash that represents the original hardware
configuration.

ActivationCode Passes the Activation Code.

DLL - LicSimpleCheckActivation(ProductId, Payload, HardwareHash, ActivationCode)

Direction Type (C)

ProductId in const char *

Payload out int *

HardwareHash in const char *

ActivationCode in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Payload Must point to an integer that, if the function succeeds, is set to the 32-bit
payload of the given Activation Code.

HardwareHash Must point to a null-terminated ASCII string specifying the Hardware Hash
representing the original hardware configuration.

ActivationCode Must point to a null-terminated ASCII string specifying the Activation
Code.

Result codes

• LIC_NO_ERROR

• The function completed successfully, i.e. the given Activation Code and the
given Hardware Hash constitute valid activation information for the software
application.

• LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION

• The current hardware configuration is too different from the original hardware
configuration as specified by the Hardware Hash.

• LIC_ERROR_INTERNAL

• Somebody has illicitly modified the individual score values contained in the

81

licact.dll file.

• The function could not free memory on the process heap.

• LIC_ERROR_INVALID_ACTIVATION_CODE

• The given Activation Code retrieved from the registry is invalid or does not
match the given Hardware Hash.

• LIC_ERROR_INVALID_HARDWARE_HASH

• The given Hardware Hash is invalid.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY

• The function could not allocate memory on the process heap.

Remarks

If the Activation Code matches the original hardware configuration as given by the passed
Hardware Hash, and if the original hardware configuration is sufficiently similar to the current
hardware configuration, your software product is considered activated, the Payload parameter
is set to the payload of the passed Activation Code and LIC_NO_ERROR is returned.

Assume that we would like to implement a variant of Product Activation where the Hardware
Hash representing the original hardware configuration and the Activation Code are stored in a
file during the activation process. To perform conventional or customized Product Activation in
this scenario, we would proceed as follows.

• Create a Hardware Hash based on the current hardware configuration. (CollectCandidates,
GetCandidate, SelectCandidate, CreateHardwareHash, FreeCandidates)

• Display the Hardware Hash to the end-user and ask him or her for the matching Activation
Code.

• Invoke this function with the created Hardware Hash and the entered Activation Code.

• If the result is not LIC_NO_ERROR, tell the end-user that the activation did not work out.

• Otherwise store the entered Activation Code along with the generated Hardware Hash in the
file.

To check whether our software application has already been activated, we would go through
the following steps.

• Retrieve the Activation Code and the Hardware Hash from the file.

• Pass both to this function.

• If the result is LIC_NO_ERROR, the software application is already activated.

• Otherwise it is not activated, yet.

82

4.10 SimpleAutoActivate

This function behaves like AutoActivate. The only difference is that it does not store the given
Hardware Hash and the Activation Code obtained from the Licenturion server in the Windows
registry. Instead, the Activation Code is returned to the caller.

COM - SimpleAutoActivate(ActivationCode, Payload, SerialNumber, HardwareHash)

Direction Type (C) Type (Visual Basic)

ActivationCode out BSTR * String

Payload out int * Long

SerialNumber in BSTR String

HardwareHash in BSTR String

Description

ActivationCode If the function succeeds, this strings receives the Activation Code returned
by the Licenturion server.

Payload If the function succeeds, this parameter receives the payload carried by
the Activation Code returned by the Licenturion server.

SerialNumber Passes the Serial Number.

HardwareHash Passes the Hardware Hash representing the original hardware
configuration to be used.

DLL - LicSimpleAutoActivate(ProductId, ActivationCode, Payload, SerialNumber,
HardwareHash)

Direction Type (C)

ProductId in const char *

ActivationCode out char *

Payload out int *

SerialNumber in const char *

HardwareHash in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

ActivationCode Must point to a 40-byte buffer that, if the function is successful, receives
the Activation Code returned by the Licenturion server.

Payload Must point to an integer that, if the the function is successful, receives the
payload carried by the Activation Code returned by the Licenturion server.

SerialNumber Must point to a null-terminated ASCII string specifying the Serial Number.

HardwareHash Must point to a null-terminated ASCII string specifying the Hardware Hash
representing the original hardware configuration to be used.

Result codes

• LIC_NO_ERROR

• The function completed successfully, i.e. the ActivationCode parameter contains
a valid Activation Code for the software application and the Payload parameter
has been set to the corresponding payload.

83

• LIC_ERROR_ACTIVATION_DENIED

• The Licenturion server denied activation. The passed Serial Number has
probably reached its maximal number of first-time activations.

• LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION

• The current hardware configuration is too different from the hardware
configuration given by the specified Hardware Hash.

• LIC_ERROR_COMMUNICATION

• The Licenturion server could not be contacted.

• LIC_ERROR_INTERNAL

• Somebody has illicitly modified the individual score values contained in the
licact.dll file.

• The function could not free memory on the process heap.

• The Licenturion server could not decrypt our request.

• The Licenturion server sent an unexpected response to our request.

• LIC_ERROR_INVALID_ACTIVATION_CODE

• The Activation Code obtained from the Licenturion server is invalid or does not
match the specified Hardware Hash.

• LIC_ERROR_INVALID_HARDWARE_HASH

• An invalid Hardware Hash was specified.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_INVALID_SERIAL_NUMBER

• An invalid Serial Number was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY

• The function could not allocate memory on the process heap.

Remarks

Assume that we would like to implement a variant of Product Activation where the Hardware
Hash representing the original hardware configuration and the Activation Code are stored in a
file during the activation process. To perform automatic Product Activation in this scenario, we
would proceed as follows.

• Create a Hardware Hash based on the current hardware configuration. (CollectCandidates,
GetCandidate, SelectCandidate, CreateHardwareHash, FreeCandidates)

• Ask the end-user for his or her Serial Number.

• Invoke this function with the created Hardware Hash and the entered Serial Number.

• If the result is not LIC_NO_ERROR, tell the end-user that the activation did not work out.

• Otherwise store the obtained Activation Code along with the generated Hardware Hash in
the file.

84

4.11 SimpleGetActivationStatus

This function behaves like GetActivationStatus. The only difference is that it does not try to
retrieve the Activation Code and the Hardware Hash from the Windows registry. Both are
passed as parameters instead.

COM - SimpleGetActivationStatus(Stat, Scores, Total, Threshold, Notebook,
HardwareHash, ActivationCode)

Direction Type (C) Type (Visual Basic)

Stat out SAFEARRAY
(unsigned char) *

Array of Byte

Scores out SAFEARRAY(int) * Array of Long

Total out int * Long

Threshold out int * Long

Notebook out int * Long

HardwareHash in BSTR String

ActivationCode in BSTR String

Description

Stat If the function succeeds, this array receives the states of the nine
characteristics. Each array element is set to one of the following five
values to indicate one of the five possible states.

• LIC_STATUS_ADDED
• LIC_STATUS_REMOVED
• LIC_STATUS_CHANGED
• LIC_STATUS_MISSING_AND_MATCHING
• LIC_STATUS_PRESENT_AND_MATCHING

The nine elements of this array map to the characteristics as follows.

• index 0: make and model of one of the installed harddrives
• index 1: make and model of one of the installed CD-ROM drives
• index 2: make and model of one of the installed SCSI host adapters or

IDE controllers
• index 3: make and model of one of the installed graphics boards
• index 4: make and model of the first CPU in the computer
• index 5: size of the installed RAM
• index 6: volume serial number of one of the available disk volumes
• index 7: CPU serial number of the first CPU in the computer
• index 8: Ethernet address of one of the installed Ethernet adapters

Scores If the function succeeds, this array receives the individual score values
assigned to the nine characteristics. The nine elements have the index
values 0 to 8 and map to the characteristics in the same way as specified
for the elements of the above Stat array.

Total If the function succeeds, this parameter receives the total score value
calculated by the scoring mechanism by adding all individual score values.

Threshold If the function succeeds, this parameter receives the total score value
required to consider this software product activated.

Notebook If the function succeeds, the parameter is set to 1 if the computer is
considered to be a notebook computer and otherwise set to 0.

85

Description

HardwareHash Passes the Hardware Hash that represents the original hardware
configuration.

ActivationCode Passes the Activation Code matching the given Hardware Hash.

DLL - LicGetActivationStatus(ProductId, Stat, Scores, Total, Threshold, Notebook,
HardwareHash, ActivationCode)

Direction Type (C)

ProductId in const char *

Stat out unsigned char *

Scores out int *

Total out int *

Threshold out int *

Notebook out int *

HardwareHash in const char *

ActivationCode in const char *

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Stat Must point to a buffer of nine bytes that, if the function succeeds, receives
the states of the nine characteristics. Each byte in the buffer is set to one
of the following five values to indicate one of the five possible states.

• LIC_STATUS_ADDED
• LIC_STATUS_REMOVED
• LIC_STATUS_CHANGED
• LIC_STATUS_MISSING_AND_MATCHING
• LIC_STATUS_PRESENT_AND_MATCHING

The nine bytes in this buffer map to the characteristics as follows.

• index 0: make and model of one of the installed harddrives
• index 1: make and model of one of the installed CD-ROM drives
• index 2: make and model of one of the installed SCSI host adapters or

IDE controllers
• index 3: make and model of one of the installed graphics boards
• index 4: make and model of the first CPU in the computer
• index 5: size of the installed RAM
• index 6: volume serial number of one of the available disk volumes
• index 7: CPU serial number of the first CPU in the computer
• index 8: Ethernet address of one of the installed Ethernet adapters

Scores Must point to a buffer with space for nine integers that, if the function
succeeds, receives the individual score values assigned to the nine
characteristics. The nine integers map to the characteristics in the same
order as specified for the elements of the above Stat buffer.

Total Must point to an integer that, if the function succeeds, is set to the total
score value calculated by the scoring mechanism by adding all individual
score values.

86

Description

Threshold Must point to an integer that, if the function succeeds, is set to the total
score value required to consider this software product activated.

Notebook Must point to an integer that, if the function succeeds, is set to 1 if the
computer is considered to be a notebook computer and otherwise set to 0.

HardwareHash Must point to a null-terminated ASCII string specifying the Hardware Hash
that represents the original hardware configuration.

ActivationCode Must point to a null-terminated ASCII string specifying the Activation
Code matching the given Hardware Hash.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION

• The current hardware configuration is too different from the original hardware
configuration given by the Hardware Hash.

• LIC_ERROR_INTERNAL

• Somebody has illicitly modified the individual score values contained in the
licact.dll file.

• The function could not free memory on the process heap.

• One of the SAFEARRAYs could not be accessed (COM only).

• LIC_ERROR_INVALID_ACTIVATION_CODE

• The given Activation Code is invalid or does not match the given Hardware
Hash.

• LIC_ERROR_INVALID_HARDWARE_HASH

• An invalid Hardware Hash was specified.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

• LIC_ERROR_NOT_ENOUGH_MEMORY

• The function could not allocate memory on the process heap.

Remarks

The function is successful if it either returns either LIC_NO_ERROR or
LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION. In the former case, your software
application is considered activated. In the latter case substantial hardware changes have been
applied to the computer since activation that invalidate the activation. Your software
application is not activated but the Stat, Scores, Total, Threshold, and Notebook parameters
have still been set to the correct values.

Assume that we would like to implement a variant of Product Activation where the Hardware
Hash representing the original hardware configuration and the Activation Code have been
stored in a file during the activation process. To display the activation details of our software
application, we would proceed as follows.

87

• Retrieve the Activation Code and the Hardware Hash from the file.

• Pass both to this function.

• If the result is LIC_NO_ERROR, the software application is activated. Display the returned
status information. The returned total score will be greater than or equal to the returned
threshold.

• If the result is LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION, the software is not
activated anymore, because the hardware configuration has been substantially changed.
Still, display the returned status information. The returned total score will be lower than the
returned threshold.

• For all other result codes, display an error message.

88

5 Wrapping executables

The wrap.exe command line tool contained in the top-level directory of this ZIP archive puts a
wrapper around a given executable to obtain a wrapped executable. The wrapper consist of
new program code that is injected into a given executable by wrap.exe. When the wrapped
executable is run this new program code is executed before the original code of the executable
and has two effects: It improves the robustness of the executable against attacks by software
pirates and it enables us to add Product Activation to software for which we do not have the
source code.

5.1 Improved robustness

The wrapper improves the robustness of an executable against illicit modification by a software
pirate. While the cryptographic wizardry underlying Product Activation reliably protects us from
key generators, an attacker is still able to modify the executable that uses Product Activation.
Suppose that we have written a simple function that implements Product Activation by means
of the standard API and that looks as follows.

void HandleProductActivation(void)
{
 int Res;
 int Payload;
 int Mode;
 char HardwareHash[15];
 Res = LicCheckActivation(PRODUCT_ID, &Payload);
 /*
 * no Activation Code in the registry
 */
 if (Res != LIC_NO_ERROR)
 {
 Res = LicWinStep1(PRODUCT_ID, &Mode);
 if (Res != LIC_NO_ERROR)
 ExitProcess(0);
 Res = LicWinStep2(PRODUCT_ID, HardwareHash, Mode);
 if (Res != LIC_NO_ERROR)
 ExitProcess(0);
 Res = LicWinStep3(PRODUCT_ID, &Payload, HardwareHash, Mode);
 if (Res != LIC_NO_ERROR)
 ExitProcess(0);
 }
}
The function first checks whether the end-user has activated before by searching the registry
for valid activation data with LicCheckActivation(). If the registry does not contain valid
activation data, the end-user is guided through the activation process by LicWinStep1(),
LicWinStep2() and LicWinStep3(). If the end-user fails to successfully complete the activation,
i.e. if any of the three functions returns a value different from LIC_NO_ERROR, the program
exits by calling ExitProcess(). With a little knowledge of assembly language it is not very hard
for a skilled attacker to modify this function in our executable. He or she could, for example,
change the following line of our function

Res = LicCheckActivation(PRODUCT_ID, &Payload);
into something like the following line.

Res = LIC_NO_ERROR;

89

So, instead of actually searching the registry for valid activation data the function would
unconditionally assume that the registry already contains valid activation data. Our piece of
software would thus never ask the end-user to activate but nevertheless work as if he or she
had already activated it.

Illicitly modifying our executable like this is called cracking the executable. A wrapper makes
cracking our executable much harder. This is typically achieved by a combination of encryption
and anti-debugger devices, which try to foil reverse engineering of our program by tracing its
execution with a debugger. The wrapper supports two forms of protection: static and dynamic
protection.

5.1.1 Static protection

Static protection means that wrap.exe encrypts the original program code carried inside an
executable and then injects new program code into the executable that decrypts the encrypted
original program code at runtime. When the wrapped executable is run, the injected code is
executed first, which then decrypts the encrypted original program code and, after decryption,
initiates execution of the decrypted original program code. As the injected code contains anti-
debugger devices, it is hard to execute it in presence of a debugger. However, without
executing the injected code the original program code will remain encrypted and thus safe
from reverse engineering and modification.

Static protection is enabled by default and cannot be disabled. When injecting the wrapper into
the executable to be protected, a password has to be specified that is used by wrap.exe to
encrypt the original program code.

5.1.2 Dynamic protection

With static protection the injected code decrypts the complete original program code when the
executable is run. Although it is hard to execute the injected code in presence of a debugger,
an attacker is able to attach a debugger to our running program after the injected code has
been executed. At this point the original program code has been completely decrypted and the
attacker is thus able to gain access to a decrypted version of the complete original program
code. In contrast, dynamic protection divides the original program code into chunks of 4096
bytes named pages and only decrypts those pages that are needed at a certain point in time. If
pages are not needed anymore, the wrapper re-encrypts them. Thus, at any point in time, only
the needed pages are in the decrypted state. All other pages are in the encrypted state. To
illustrate this idea suppose that we have a program that contains two functions and which has
the following structure.

void Sub(void)
{
 /*
 * program code for Sub
 */
}
void Func(void)
{
 Sub();
}
The function Func() simply invokes a second function named Sub(). Now let us have a look at
what dynamic protection does in principle. Suppose that the program code for Func() is located
in page #1 and the program code for Sub() in page #2. Initially both pages are still encrypted.
When Func() is called, page #1 is decrypted to unveil the program code for Func(), which can
then be executed. Page #2 remains encrypted. Once Func() calls Sub(), page #1 is re-
encrypted to hide the program code for Func() and page #2 is decrypted to unveil the program
code for Sub() instead, enabling execution of Sub(). When Sub() returns, page #2 is re-
encrypted to hide the program code for Sub() and page #1 is decrypted to unveil the program
code for Func() instead and thus enable further execution of Func(). Finally, when Func()
returns, page #1 is re-encrypted to hide the program code for Func(). So, only the single page

90

that contains the currently executed program code is in the decrypted state at any point in
time.

As can easily be seen, switching execution from one function to another function requires the
decryption of the page that contains the code of the function to be entered and the re-
encryption of the page that contains the function to be left. Although encryption and decryption
are fast operations, their overhead reduces the performance of the protected executable. To
counter this performance penalty the wrapper offers to leave the most recently needed n pages
in the decrypted state, where n is a configurable number. If we chose n to be 2 in the above
example, the wrapper would first decrypt page #1 to get access to the code for Func(). When
Func() calls Sub(), the wrapper would additionally decrypt page #2 without re-encrypting page
#1, as it is allowed to keep up to 2 pages in the decrypted state at the same time. This saves
on encryptions and decryptions and thus reduces the performance penalty. However, the
higher the number of pages that are visible at the same time, the larger the part of your
program code that an attacker sees (2 pages = 2 x 4096 bytes = 8192 bytes) when he or she
attaches a debugger to your running program. The value chosen for n is thus always a trade-
off between performance and security. We would typically start out with a small value, run our
program, and, if we are not satisfied with its performance, increase n.

Dynamic protection is not enabled by default. When enabling it, the number of pages that may
be kept in the decrypted state at the same time by the wrapper must be specified.

5.2 Protecting without source code

Up to now we have assumed that we have access to the source code of the executable to be
protected. We would then simply add calls to functions of the standard API or the advanced API
to our source code to implement Product Activation. However, if the piece of software that we
want to protect were written by somebody else and this somebody did not disclose the
corresponding source code to us, we could not add these function calls. Luckily, the wrapper
allows us to work our way around this problem.

In addition to decrypting the original program code and to providing anti-debugger devices the
wrapper code injected for static protection can be instructed to load a dynamic link library
(DLL) and call a function in this library to obtain the password to be used for decryption. If the
function returns a password, the wrapper uses it to decrypt the original program code. If the
function does not return a password, no decryption takes place as no password is available and
the wrapper simply terminates the running executable. This enables us to write our own DLL
that implements Product Activation via the standard API or the advanced API and hook this
DLL into the wrapper and thus into the executable to be protected - although we do not have
the source code of the executable. As a result the wrapped executable will only work if our DLL
says "Go!".

So, by means of the described mechanism we can make the wrapper load our self-made DLL
and call our function inside. Our function would then, for example, determine whether the
registry already contains valid activation data. If it did, the function would indicate to the
wrapper - by returning the decryption password - that everything is on track and that it shall
proceed with the decryption of the original program code and initiate execution of the original
program code. If the registry did not contain valid activation data, the end-user would be
guided through the activation process. If the end-user successfully completed the activation
procedure, our function would again indicate to the wrapper - by returning the decryption
password - that it shall proceed with the decryption of the original program code and initiate
execution of the original program code. Otherwise our function would not return a password
and thus indicate to the wrapper that program execution is to be aborted.

The wrapper expects our DLL to be named LicWrap.dll. The search rules of LoadLibrary() apply.
Placing the LicWrap.dll DLL in the same directory as the wrapped executable is therefore a
good choice. The function to be called needs to be named LicWrap(), needs to use the
STDCALL calling convention, and is required to have the following prototype.

BOOL __stdcall LicWrap(char *ModulePath, char *Password)

91

The wrapper looks for a function named "_LicWrap@8" as well as a function named "LicWrap".

If the function wants to return a decryption password, it must copy it to the buffer pointed to
by the "Password" parameter. In this case the return value must be TRUE. The "Password"
buffer has a size of 31 bytes. The length of the returned password must thus not exceed 30
characters. If the function does not want to return a decryption password, it must return
FALSE.

To enable the function to verify the integrity of the protected executable as an additional layer
of security, the "ModulePath" parameter points to the path of the protected executable. The
function can then, for example, use the path to open the executable file, calculate a checksum
over it, and return FALSE if the checksum indicates that the file has been illicitly modified.
However, this additional integrity check is strictly optional.

If we used "secret" as the encryption password, a minimalistic implementation of LicWrap(),
which always instructs the wrapper to do the decryption and which does not verify the integrity
of the protected executable, would look as follows.

BOOL __stdcall LicWrap(char *ModulePath, char *Password)
{
 lstrcpy(Password, "secret");
 return TRUE;
}
The LicWrap.dll DLL contained in the top-level directory of this ZIP archive is an
implementation of Product Activation to be used with the wrapper. Its C source code is
available in the LicWrap subdirectory.

When the wrapper is injected into the executable the DLL to be used has to be specified. Why
is this necessary? After all, the wrapper always looks for a DLL named LicWrap.dll. So, why is it
necessary to specify the DLL to be used? When the wrapper is injected, a checksum over the
specified DLL is calculated and embedded into the wrapper. This enables the wrapper to verify
the integrity of the DLL between loading the DLL and calling LicWrap(). Illicit modification of
the DLL by a software pirate hence becomes harder. So, the DLL must be specified to allow
wrap.exe to calculate the checksum to be embedded into the wrapper. The injected wrapper
does not know about the specified DLL and always uses LicWrap.dll as the DLL name. Hence,
the wrapper always compares the checksum that wrap.exe calculated over the specified DLL
with the checksum of the LicWrap.dll DLL that it has loaded. There's an important lesson to be
learned from this.

IMPORTANT: When you modify your LicWrap.dll DLL (even if you simply re-compile it), you
must always re-wrap the executable to generate a new wrapped executable as the new
version of the LicWrap.dll DLL will have a checksum that is different from the checksum of the
old DLL version! The effect of re-wrapping with the new LicWrap.dll DLL is to create a new
wrapped executable that contains the checksum of the new DLL. Running the old protected
executable that still contains the old checksum in conjunction with the new LicWrap.dll DLL
would cause the wrapper to think that the DLL has been modified and a corresponding error
message (error code 05) to be displayed.

5.3 Error messages

If the wrapper encounters a problem, it displays a message box that contains a two-digit error
code describing the problem. The following table lists all possible error codes and their
meaning.

Error code Meaning

01 The wrapper could not load the LicWrap.dll DLL. Remember that the wrapper
uses the same search strategy as LoadLibrary(). Did you place the LicWrap.dll
DLL in a directory where it can be found?

92

Error code Meaning

02 The path of the loaded LicWrap.dll DLL could not be determined. The wrapper
needs the path to open the file for calculating its checksum.

03 The wrapper was unable to allocate 512 kilobytes of temporary buffer space.
The buffer space is required for calculating the checksum over the loaded
LicWrap.dll DLL.

04 The wrapper was unable to read data from the LicWrap.dll file for calculating the
checksum over it.

05 The checksum calculated over the LicWrap.dll file was different from the
checksum embedded into the wrapper by wrap.exe. This indicates that the
LicWrap.dll file has been changed since the wrapper was injected into the
protected executable.

06 The 512 kilobytes allocated for the temporary buffer could not be freed.

07 The wrapper was unable to find the LicWrap() function in the loaded LicWrap.dll
DLL. Remember that LicWrap() must adhere to the prototype given above. The
wrapper looks for a function exported as "_LicWrap@8" or "LicWrap".

08 The path of the running wrapped executable could not be determined. The
wrapper needs the path to pass it to LicWrap().

09 The wrapper could not change the memory protection mode of the original
program code in the running wrapped executable from read-only to read-write.
For decryption the wrapper needs read-write access to this part of the loaded
in-memory executable.

10 The original program code yielded an invalid checksum. After decrypting the
original program code, the wrapper tests its integrity by calculating a checksum.
If the original program code was not illicitly modified by an attacker, the most
likely cause is that the decryption failed because LicWrap() returned a password
that did not match the password that was specified when injecting the wrapper
into the executable. In this case make sure that the same password is used in
both places.

11 The wrapper could not reset the memory protection mode of the original
program code in the loaded in-memory executable.

12 The process ID of the running wrapped executable could not be determined.

13 A temporary file required for dynamic protection could not be created.

14 A temporary file required for dynamic protection could not be written.

15 The auxiliary process required for dynamic protection could not be created.

5.4 Putting everything to work

5.4.1 Static protection

Suppose we simply want to apply static protection to the Notepad executable that comes with
Windows and that the notepad.exe executable is located in C:\WINDOWS\system32. This is
the most basic form of using wrap.exe. It just requires the input file (in our case this would be
"C:\WINDOWS\system32\notepad.exe"), the output file (let's use "out.exe"), and a password
(let's use "blah") for the encryption of the original program code of notepad.exe. If we open a
command prompt and change the current directory to the top-level directory of this ZIP
archive, the following command will accomplish the task.

D:\LicActSDK>wrap C:\WINDOWS\system32\notepad.exe out.exe blah

The resulting out.exe executable now contains the original program code taken from the

93

notepad.exe executable plus the injected wrapper code. Just run the out.exe executable and
you will... not notice anything apart from a short delay before the Notepad window appears.
This delay is due to the injected wrapper code being executed before the original program code
taken from the notepad.exe executable. So, we have now successfully protected Notepad using
static protection.

IMPORTANT: The generated wrapped executable (in this case "out.exe") is composed of the
full contents of the executable to be protected (in this case "notepad.exe") plus the injected
wrapper. The wrapped executable is therefore fully self-contained. There is no need to
distribute the original unprotected executable ("notepad.exe") together with the wrapped
executable ("out.exe").

5.4.2 Hooking into the wrapper

Suppose that we now want to protect Notepad with Product Activation. To accomplish this we
use the LicWrap.dll DLL in the top-level directory of this ZIP archive. As the LicWrap.dll DLL
returns "secret" as the password, we will have to use this password when invoking wrap.exe.
The DLL to be used is specified with the "-w" ("wrapper DLL") option, as in "-w LicWrap.dll".
The following command will hence do the job.

D:\LicActSDK>wrap C:\WINDOWS\system32\notepad.exe out.exe secret -w LicWrap.dll

Again, the resulting out.exe executable consists of the original program code taken from the
notepad.exe executable plus the injected wrapper code. If we run the out.exe executable, the
activation process will be initiated. If this does not happen, then your registry probably already
contains valid activation data. Otherwise, after we have successfully activated, the
corresponding activation data will be stored in the registry and the Notepad window will be
opened. So, again, the injected wrapper code is executed first, which then calls LicWrap() in
the LicWrap.dll DLL, and, if the LicWrap.dll DLL says "Go!" because the end-user has
successfully activated or valid activation data have been found in the registry, initiates the
execution of the original program code taken from the notepad.exe executable.

5.4.3 Dynamic protection

Suppose that we finally want to apply dynamic protection to Notepad without, however,
hooking the LicWrap.dll DLL into the wrapper. Dynamic protection is enabled with the "-r"
("runtime encryption/decryption") option. This option takes as its single argument the number
n of pages that may be in the decrypted state at the same time, as in "-r 4" for four pages. The
minimal number of pages that can be specified is 4, which corresponds to 4 x 4096 bytes =
16384 bytes. The maximal number is 500, which corresponds to 500 x 4096 bytes = 2000
kilobytes. The lower the number, the higher the level of protection and the higher the
performance penalty. The following command will do the job, this time with "bob" as the
password.

D:\LicActSDK>wrap C:\WINDOWS\system32\notepad.exe out.exe bob -r 4

As static protection is always in place, even in presence of dynamic protection, it will take a
few moments before we see the Notepad window when we run the out.exe executable. In
addition, Notepad performance will be slightly degraded as the wrapper is continuously
encrypting and decrypting pages in the background while the out.exe executable is running.

To hook the LicWrap.dll DLL into the wrapper and at the same time use dynamic protection
simply combine the "-w" option and the "-r" option. If you use the LicWrap.dll DLL contained in
the top-level directory of this ZIP archive, do not forget to always use "secret" as the password
given to wrap.exe.

5.5 Other important things

• The current version of the wrap.exe tool does not support wrapping DLLs. The only
supported files are executables.

• The current version of the wrap.exe tool does not support executables with atypical

94

characteristics, e.g. executables that contain relocation information. If the wrap.exe tool
aborts with an error message that suggests that the executable to be wrapped contains data
that cannot be handled, try adding the "-s" ("strip") option to the command line. This option
will try to remove the atypical characteristics from the executable.

• Use the "-q" ("quiet") option to suppress the verbose output that is enabled by default.

• Dynamic protection currently does not work reliably on some 486 processors.

• Perform extensive tests with your wrapped executables, especially when using dynamic
protection! Any wrapper has to apply functionality supplied by Windows in a way in which it
was never meant to be used. So, the wrapper has a higher potential of causing trouble than
"normal" Windows applications, although it is well-tested and did not cause any problems in
our test environments. Still, in theory it might be the case that your executable cannot be
dynamically protected - or even wrapped at all.

95

6 High Availability

Up to now we have always talked about the activation server. However, to ensure high
availability of the activation service even in the presence of natural disasters, airplane crashes,
network connections cut by construction work, etc., we actually maintain activation servers at
two geographically distinct sites. Each of the two sites is in itself redundant (server hardware,
network hardware), so that the additional redundancy offered by two sites is really only for
true worst-case scenarios.

6.1 Background

The first site is act.licenturion.com. This is the master site that in the normal course of
operation receives and processes activation requests. Changes to the activation database on
act.licenturion.com are replicated to the hot-standby site act2.licenturion.com in real-time, so
that act2.licenturion.com mirrors the state of the master site at any time. It does not,
however, accept activation requests. Only if failure of the master site is detected, cuts the hot-
standby site its link to the master site and starts accepting activation requests.

Based on this, high availability for automatic activation is implemented as follows.

• Try to reach act.licenturion.com. The timeout is 20 seconds.

• If act.licenturion.com is reachable and works properly, use it to activate.

• If act.licenturion.com is not reachable or if it does not work properly, try to reach
act2.licenturion.com. Again, the timeout is 20 seconds.

• If act2.licenturion.com is reachable and works properly, use it to activate.

• If act2.licenturion.com is not reachable or if it does not work properly, return an error.

High availability is thus achieved by having the activation client determine whether the master
site or the hot-standby site currently is on duty. Simple, quite manageable, and pretty
effective.

For manual activation the analogous mechanism would be to tell the end-users "Simply direct
your web-browser to act.licenturion.com first and, if nothing happens there, try
act2.licenturion.com." Although the hot-standby site comes into play only in, as mentioned
above, true worst-case scenarios, we should do better than this. The advanced API therefore
contains one other function, GetActivationUrl(). The idea is that your application supplies a
"perform manual activation" button. When this button is clicked, your application calls
GetActivationUrl() to determine the URL to be used for manual activation, i.e. either a URL
based on act.licenturion.com or a URL based on act2.licenturion.com. Your application then
uses the Win32 function ShellExecute() to open the returned URL in the end-user's web-
browser.

As an aside, WinStep3() uses this function to determine which URL to open when the end-user
clicks on the "act.licenturion.com" link.

96

6.2 GetActivationUrl()

This function tries to reach act.licenturion.com for 20 seconds. If act.licenturion.com is
reachable and works properly, a URL based on act.licenturion.com is returned. Otherwise the
function tries to reach act2.licenturion.com for 20 seconds. If act2.licenturion.com is reachable
and works properly, a URL based on act2.licenturion.com is returned.

COM - GetActivationUrl(Url)

Direction Type (C) Type (Visual Basic)

Url out BSTR * String

Description

Url If the function succeeds, this parameter receives the URL to be used for
manual activation.

DLL - LicGetActivationUrl(ProductId, Url)

Description

ProductId Must point to a null-terminated ASCII string specifying the Product ID of
your licact.dll file.

Url Must point to a buffer of at least 500 bytes that, if the the function is
successful, receives the null-terminated ASCII string specifying the URL to
be used for manual activation.

Result codes

• LIC_NO_ERROR

• The function completed successfully.

• LIC_ERROR_COMMUNICATION

• Neither act.licenturion.com nor act2.licenturion.com could be reached.

• LIC_ERROR_INTERNAL

• The mutex protecting the global storage could not be obtained.

• LIC_ERROR_INVALID_PRODUCT_ID (DLL only)

• An invalid Product ID was specified.

Remarks

No remarks.

97

7 Constants

7.1 Result codes

Constant Value

LIC_NO_ERROR 0

LIC_ERROR_ALREADY_ACTIVATED 1

LIC_ERROR_INTERNAL 2

LIC_ERROR_NOT_ENOUGH_MEMORY 3

LIC_ERROR_INVALID_INDEX 4

LIC_ERROR_CANNOT_READ_FROM_REGISTRY 5

LIC_ERROR_CANNOT_WRITE_TO_REGISTRY 6

LIC_ERROR_INVALID_HARDWARE_HASH 7

LIC_ERROR_CHANGED_HARDWARE_CONFIGURATION 8

LIC_ERROR_CANNOT_DELETE_FROM_REGISTRY 9

LIC_ERROR_INVALID_PRODUCT_ID 11

LIC_ERROR_CANCEL 12

LIC_ERROR_LIBRARY_NOT_FOUND 13

LIC_ERROR_NO_LIBRARY_LOADED 14

LIC_ERROR_CANNOT_CREATE_DIALOG 16

LIC_ERROR_INVALID_ARRAY_FORMAT 17

LIC_ERROR_STRING_TOO_LONG 18

LIC_ERROR_INVALID_ACTIVATION_CODE 19

LIC_ERROR_INVALID_SERIAL_NUMBER 20

LIC_ERROR_COMMUNICATION 21

LIC_ERROR_ACTIVATION_DENIED 22

LIC_ERROR_EXPIRED 23

7.2 Activation modes

Constant Value

LIC_MODE_AUTOMATIC 0

LIC_MODE_CONVENTIONAL 1

LIC_MODE_CUSTOMIZED 2

7.3 Type of hardware components

Constant Value

LIC_HARDDRIVE 0

LIC_CD_ROM_DRIVE 1

98

Constant Value

LIC_MASS_STORAGE_CONTROLLER 2

LIC_GRAPHICS_ADAPTER 3

LIC_CPU_TYPE 4

LIC_MEMORY_SIZE 5

LIC_VOLUME_SERIAL_NUMBER 6

LIC_CPU_SERIAL_NUMBER 7

LIC_MAC_ADDRESS 8

7.4 States of characteristics

Constant Value

LIC_STATUS_ADDED 0

LIC_STATUS_REMOVED 1

LIC_STATUS_CHANGED 2

LIC_STATUS_MISSING_AND_MATCHING 3

LIC_STATUS_PRESENT_AND_MATCHING 4

7.5 Predefined registry keys

Constant Value

LIC_HKEY_CLASSES_ROOT 0

LIC_HKEY_CURRENT_USER 1

LIC_HKEY_LOCAL_MACHINE 2

LIC_HKEY_USERS 3

LIC_HKEY_PERFORMANCE_DATA 4

LIC_HKEY_CURRENT_CONFIG 5

LIC_HKEY_DYN_DATA 6

99

